荷电状态
稳健性(进化)
电压
电池(电)
人工神经网络
计算机科学
均方误差
过程(计算)
开路电压
算法
控制理论(社会学)
工程类
数学
人工智能
功率(物理)
电气工程
化学
物理
量子力学
生物化学
统计
控制(管理)
基因
操作系统
作者
Mengmeng Liu,Jun Xu,Yihui Jiang,Xuesong Mei
出处
期刊:Energy
[Elsevier]
日期:2023-04-02
卷期号:274: 127407-127407
被引量:24
标识
DOI:10.1016/j.energy.2023.127407
摘要
The flat open-circuit voltage (OCV) curve of LiFePO4 (LFP) batteries poses a significant challenge to state of charge (SOC) estimation. To solve this problem, this paper proposes a data-driven SOC estimation method based on multi-dimensional features, especially incorporating force signals. The significant force variation at the middle SOC region section compensates for the flat OCV problem. A long short-term memory (LSTM) neural network model is established to estimate SOC. Battery voltage, current, temperature, and force data sampled only in 5 s are taken as input. The proposed method is validated under different dynamic testing profiles and different temperatures. Experimental results indicate that this method can highly improve SOC estimation accuracy in the middle SOC region, with less than 0.5% root mean square errors and less than 2.5% maximum errors. The validation results at different temperatures also maintain high accuracy with the same model, showing strong robustness and excellent generalization performance. Additionally, the model training process of this method only takes 1.5 h, and the online estimation time is less than 1 s, considerably reducing time cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI