星形胶质细胞
血脑屏障
帕金森病
神经科学
LRRK2
黑质
炎症
诱导多能干细胞
发病机制
疾病
生物
免疫系统
神经炎症
细胞生物学
医学
免疫学
病理
中枢神经系统
遗传学
胚胎干细胞
基因
作者
Aurélie de Rus Jacquet,Melanie Alpaugh,Hélèna L. Denis,Jenna L Tancredi,Molly E. Boutin,Jochen Decaestecker,C Beauparlant,Lara Herrmann,Martine Saint‐Pierre,Martin Parent,Arnaud Droit,Sylvie Breton,Francesca Cicchetti
标识
DOI:10.1038/s41467-023-39038-8
摘要
Abstract Astrocyte dysfunction has previously been linked to multiple neurodegenerative disorders including Parkinson’s disease (PD). Among their many roles, astrocytes are mediators of the brain immune response, and astrocyte reactivity is a pathological feature of PD. They are also involved in the formation and maintenance of the blood-brain barrier (BBB), but barrier integrity is compromised in people with PD. This study focuses on an unexplored area of PD pathogenesis by characterizing the interplay between astrocytes, inflammation and BBB integrity, and by combining patient-derived induced pluripotent stem cells with microfluidic technologies to generate a 3D human BBB chip. Here we report that astrocytes derived from female donors harboring the PD-related LRRK2 G2019S mutation are pro-inflammatory and fail to support the formation of a functional capillary in vitro. We show that inhibition of MEK1/2 signaling attenuates the inflammatory profile of mutant astrocytes and rescues BBB formation, providing insights into mechanisms regulating barrier integrity in PD. Lastly, we confirm that vascular changes are also observed in the human postmortem substantia nigra of both males and females with PD.
科研通智能强力驱动
Strongly Powered by AbleSci AI