亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends

计算机科学 数据科学
作者
Abolfazl Younesi,Mohsen Ansari,MohammadAmin Fazli,Alireza Ejlali,Muhammad Shafique,Jörg Henkel
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 41180-41218 被引量:44
标识
DOI:10.1109/access.2024.3376441
摘要

In today's digital age, Convolutional Neural Networks (CNNs), a subset of Deep Learning (DL), are widely used for various computer vision tasks such as image classification, object detection, and image segmentation. There are numerous types of CNNs designed to meet specific needs and requirements, including 1D, 2D, and 3D CNNs, as well as dilated, grouped, attention, depthwise convolutions, and NAS, among others. Each type of CNN has its unique structure and characteristics, making it suitable for specific tasks. It's crucial to gain a thorough understanding and perform a comparative analysis of these different CNN types to understand their strengths and weaknesses. Furthermore, studying the performance, limitations, and practical applications of each type of CNN can aid in the development of new and improved architectures in the future. We also dive into the platforms and frameworks that researchers utilize for their research or development from various perspectives. Additionally, we explore the main research fields of CNN like 6D vision, generative models, and meta-learning. This survey paper provides a comprehensive examination and comparison of various CNN architectures, highlighting their architectural differences and emphasizing their respective advantages, disadvantages, applications, challenges, and future trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
虚幻馒头发布了新的文献求助500
4秒前
草木发布了新的文献求助10
18秒前
24秒前
26秒前
Meteor发布了新的文献求助10
31秒前
34秒前
草木发布了新的文献求助10
37秒前
草木发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
充电宝应助池雨采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助池雨采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
neu_zxy1991完成签到,获得积分10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
大大大忽悠完成签到 ,获得积分10
3分钟前
虚幻馒头完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
ZYP应助池雨采纳,获得10
4分钟前
大轩完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494056
求助须知:如何正确求助?哪些是违规求助? 4591933
关于积分的说明 14434988
捐赠科研通 4524580
什么是DOI,文献DOI怎么找? 2478850
邀请新用户注册赠送积分活动 1463796
关于科研通互助平台的介绍 1436645