A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends

计算机科学 数据科学
作者
Abolfazl Younesi,Mohsen Ansari,MohammadAmin Fazli,Alireza Ejlali,Muhammad Shafique,Jörg Henkel
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 41180-41218 被引量:44
标识
DOI:10.1109/access.2024.3376441
摘要

In today's digital age, Convolutional Neural Networks (CNNs), a subset of Deep Learning (DL), are widely used for various computer vision tasks such as image classification, object detection, and image segmentation. There are numerous types of CNNs designed to meet specific needs and requirements, including 1D, 2D, and 3D CNNs, as well as dilated, grouped, attention, depthwise convolutions, and NAS, among others. Each type of CNN has its unique structure and characteristics, making it suitable for specific tasks. It's crucial to gain a thorough understanding and perform a comparative analysis of these different CNN types to understand their strengths and weaknesses. Furthermore, studying the performance, limitations, and practical applications of each type of CNN can aid in the development of new and improved architectures in the future. We also dive into the platforms and frameworks that researchers utilize for their research or development from various perspectives. Additionally, we explore the main research fields of CNN like 6D vision, generative models, and meta-learning. This survey paper provides a comprehensive examination and comparison of various CNN architectures, highlighting their architectural differences and emphasizing their respective advantages, disadvantages, applications, challenges, and future trends.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cc发布了新的文献求助10
1秒前
要减肥的翠萱完成签到 ,获得积分10
2秒前
Laolin完成签到,获得积分10
3秒前
小机灵鬼发布了新的文献求助10
3秒前
3秒前
要减肥的翠萱关注了科研通微信公众号
7秒前
明理苑博发布了新的文献求助10
7秒前
刘shuchang完成签到 ,获得积分10
10秒前
西柚子发布了新的文献求助10
11秒前
courage完成签到,获得积分10
11秒前
缓慢的绿草完成签到,获得积分10
12秒前
13秒前
RC_Wang发布了新的文献求助10
13秒前
脑洞疼应助健康的幻珊采纳,获得30
15秒前
ll完成签到 ,获得积分10
21秒前
科研通AI6.1应助1122采纳,获得30
24秒前
25秒前
26秒前
bkagyin应助cc采纳,获得10
26秒前
万能图书馆应助asd采纳,获得10
26秒前
Believer完成签到,获得积分10
27秒前
28秒前
小蘑菇应助岳岳岳采纳,获得10
28秒前
今后应助皮皮采纳,获得30
29秒前
30秒前
东郭迎松发布了新的文献求助30
31秒前
31秒前
34秒前
yuan完成签到 ,获得积分10
34秒前
Orange应助强健的伟祺采纳,获得10
35秒前
医学生良发布了新的文献求助50
37秒前
37秒前
完美世界应助调皮的志泽采纳,获得10
37秒前
打打应助明理苑博采纳,获得10
38秒前
cc发布了新的文献求助10
38秒前
明亮的老四完成签到 ,获得积分10
39秒前
科研通AI6.1应助XS_QI采纳,获得10
39秒前
人间冒险完成签到,获得积分10
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864232
求助须知:如何正确求助?哪些是违规求助? 6399182
关于积分的说明 15650516
捐赠科研通 4978468
什么是DOI,文献DOI怎么找? 2685386
邀请新用户注册赠送积分活动 1628464
关于科研通互助平台的介绍 1586158