Early identification of strawberry leaves disease utilizing hyperspectral imaging combing with spectral features, multiple vegetation indices and textural features

高光谱成像 支持向量机 特征选择 极限学习机 灰度级 模式识别(心理学) 人工智能 计算机视觉 数学 像素 计算机科学 人工神经网络
作者
Gangshan Wu,Yinlong Fang,Qiyou Jiang,Ming Cui,Na Li,Yunmeng Ou,Zhihua Diao,Baohua Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107553-107553 被引量:84
标识
DOI:10.1016/j.compag.2022.107553
摘要

Gray mold is a devastating disease during the growth of strawberries, which markedly affects strawberry yield and quality. Accurate, rapid, and nondestructive recognition in the early phase of the disease is important for strawberry production management. This study focused on the potential of using hyperspectral imaging (HSI) combined with spectral features, vegetation indices (VIs), and textural features (TFs) for the detection of gray mold on strawberry leaves. First, hyperspectral images of healthy and 24-h infected leaves were collected using a HSI system. Subsequently, the preprocessed hyperspectral images were utilized to extract the spectral features and VIs. TFs were acquired from the images using a grey-level co-occurrence matrix (GLCM). Third, competitive adaptive reweighted sampling (CARS) was performed to select the optimum wavelengths (OWs), ReliefF was employed to select significant VIs, and correlation-based feature selection was used to select the effective TFs. Finally, three machine learning models (extreme learning machine (ELM), support vector machine (SVM), and K-nearest Neighbor (KNN)) of strawberry gray mold were developed based on OWs, significant VIs, effective TFs, and fusion features. The results demonstrated that the models based on OWs and significant VIs performed well, with their highest classification accuracy reaching 93.33%. Although the model based on selected TFs performed slightly worse, the results presented on disease detection by TFs are encouraging for further studies. The performance of the models with combined features was better than those based on single features, with an accuracy range of 93.33–96.67%. Overall, the combined feature-based method significantly improved the recognition accuracy of strawberry gray mold and could accurately identify infected leaves in the early stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得30
刚刚
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
愉快无心完成签到 ,获得积分10
3秒前
9秒前
钟梓袄发布了新的文献求助10
12秒前
dldldl完成签到,获得积分10
12秒前
JJJ发布了新的文献求助10
13秒前
啦啦啦完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
和谐诗双完成签到 ,获得积分10
17秒前
阿锋完成签到 ,获得积分10
18秒前
谦让以亦完成签到 ,获得积分10
23秒前
李健的粉丝团团长应助JJJ采纳,获得10
26秒前
dmr完成签到,获得积分10
26秒前
28秒前
悦耳的城完成签到 ,获得积分10
28秒前
qiancib202完成签到,获得积分0
30秒前
群青完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
钟梓袄发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
34秒前
研友_Tensor完成签到 ,获得积分10
37秒前
hj完成签到,获得积分10
38秒前
38秒前
杏林靴子完成签到,获得积分10
41秒前
43秒前
俭朴尔竹发布了新的文献求助10
44秒前
44秒前
Atlantis完成签到 ,获得积分10
47秒前
坐雨赏花完成签到 ,获得积分10
48秒前
钟梓袄发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助50
50秒前
xiong完成签到,获得积分10
52秒前
53秒前
落雪完成签到 ,获得积分10
54秒前
123完成签到 ,获得积分10
58秒前
1分钟前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5809538
求助须知:如何正确求助?哪些是违规求助? 5883941
关于积分的说明 15525236
捐赠科研通 4933847
什么是DOI,文献DOI怎么找? 2656986
邀请新用户注册赠送积分活动 1603186
关于科研通互助平台的介绍 1558531