Neural general circulation models for weather and climate

数值天气预报 气候模式 气象学 大气环流模式 模型输出统计 气候学 天气预报 北美中尺度模式 比例(比率) 环境科学 计算机科学 热带气旋预报模式 气候变化 全球预报系统 机器学习 地理 地质学 海洋学 地图学
作者
Dmitrii Kochkov,Janni Yuval,Ian Langmore,Peter Nørgaard,Jamie Smith,Griffin Mooers,Milan Klöwer,James Lottes,Stephan Rasp,Peter Düben,Sam Hatfield,Peter Battaglia,Álvaro Sánchez‐González,Matthew Willson,Michael P. Brenner,Stephan Hoyer
出处
期刊:Nature [Nature Portfolio]
卷期号:632 (8027): 1060-1066 被引量:208
标识
DOI:10.1038/s41586-024-07744-y
摘要

Abstract General circulation models (GCMs) are the foundation of weather and climate prediction 1,2 . GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting 3,4 . However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的若剑完成签到,获得积分10
1秒前
1秒前
3秒前
bkagyin应助云朵采纳,获得10
4秒前
云山完成签到,获得积分10
5秒前
wyt1239012发布了新的文献求助10
5秒前
rita_sun1969发布了新的文献求助20
5秒前
Cyph1r完成签到,获得积分10
6秒前
7秒前
8秒前
无花果应助云山采纳,获得10
8秒前
多巴胺发布了新的文献求助10
8秒前
思源应助戳戳采纳,获得10
8秒前
学术垃圾完成签到,获得积分10
9秒前
9秒前
丘比特应助wyx采纳,获得10
9秒前
好好发布了新的文献求助30
10秒前
11秒前
知名不具完成签到 ,获得积分10
11秒前
老迟到的小丸子完成签到,获得积分10
11秒前
12秒前
脑洞疼应助忐忑的方盒采纳,获得10
12秒前
好好休息完成签到 ,获得积分10
13秒前
XHH完成签到,获得积分10
13秒前
Executor发布了新的文献求助10
13秒前
舒心亦凝发布了新的文献求助10
13秒前
13秒前
思源应助plasma采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
浮游应助尧舜禹采纳,获得30
15秒前
16秒前
古丹娜完成签到,获得积分10
16秒前
微信研友完成签到,获得积分10
16秒前
17秒前
Koalas应助啦啦啦采纳,获得10
18秒前
浮游应助好名字采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281