Artificial intelligence in echocardiography: trends, hotspots and future directions

作者
Guo Qi,Jiafu Ma,Hongzhe Zhang,Yuting Lv,Tiantian Yang,Xiaohua Pei,Yanli Sun,Yanli Sun
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000004061
摘要

Background: Artificial intelligence (AI) is revolutionizing echocardiography by enhancing diagnostic accuracy, automating workflows, and addressing operator-dependent variability. Despite advancements, systematic analyses of AI’s integration into echocardiography remain limited. Methods: We analyzed 1,296 publications from the Web of Science using bibliometrix R. Data included annual trends, author impact, institutional contributions, country contributions, and keyword evolution. Results: From 2019 to 2024, annual publications increased from 45 to 302, with citations peaking in 2019. The United States and China dominated output. Leading institutions included Mayo Clinic and Harvard University. Key contributors like SENGUPTA PP and LOPEZ-JIMENEZ F focused on AI-driven cardiac parameter quantification and pathology detection. High-frequency keywords highlighted priorities in “diagnosis,” “classification,” and “heart failure.” Thematic evolution revealed a shift from structural abnormality studies (2000–2013) to deep learning applications (2019–2025). Conclusion: From 2019 to 2024, annual publications increased rapidly, reflecting accelerated advancements in AI-driven echocardiography. Key research hotspots encompass automated image analysis, diagnostic classification, prognostic prediction, and workflow optimization, with deep learning models demonstrating significant potential to reduce operator dependency and enhance diagnostic precision. Future research will prioritize three critical challenges: data standardization across heterogeneous sources, development of fully automated diagnostic pipelines, and improving the clinical reliability of AI systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助非我采纳,获得10
刚刚
phil完成签到,获得积分10
1秒前
默默问芙发布了新的文献求助10
1秒前
1秒前
充电宝应助大地采纳,获得10
1秒前
2秒前
阿源发布了新的文献求助10
2秒前
梅一一完成签到,获得积分10
2秒前
阁主完成签到,获得积分10
2秒前
123完成签到 ,获得积分10
2秒前
王闪闪发布了新的文献求助10
3秒前
温暖的丹烟完成签到,获得积分10
3秒前
小布发布了新的文献求助30
3秒前
李爱国应助晚若旧采纳,获得10
3秒前
axt发布了新的文献求助10
3秒前
赘婿应助林白采纳,获得10
3秒前
4秒前
4秒前
Douest完成签到 ,获得积分10
4秒前
4秒前
5秒前
李博士发布了新的文献求助20
5秒前
romio发布了新的文献求助10
5秒前
懒洋洋完成签到 ,获得积分10
5秒前
林木源应助化龙采纳,获得10
5秒前
刘凯发布了新的文献求助10
6秒前
Roy完成签到,获得积分10
6秒前
iNk应助尔尔采纳,获得20
6秒前
7秒前
GQ完成签到,获得积分10
7秒前
zym0426关注了科研通微信公众号
7秒前
麦穗完成签到,获得积分10
7秒前
FashionBoy应助ljh采纳,获得10
7秒前
zero完成签到,获得积分10
8秒前
mini发布了新的文献求助30
8秒前
ZJH完成签到 ,获得积分10
8秒前
张益达完成签到,获得积分0
9秒前
xxb发布了新的文献求助10
9秒前
9秒前
不做精神世界的瘸子完成签到,获得积分10
9秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388431
求助须知:如何正确求助?哪些是违规求助? 4510493
关于积分的说明 14035669
捐赠科研通 4421255
什么是DOI,文献DOI怎么找? 2428741
邀请新用户注册赠送积分活动 1421317
关于科研通互助平台的介绍 1400559