Resisting Deep Learning Models Against Adversarial Attack Transferability via Feature Randomization

对抗制 计算机科学 可转让性 人工智能 机器学习 深度学习 稳健性(进化) 分类器(UML) 对抗性机器学习 罗伊特 生物化学 化学 基因
作者
Ehsan Nowroozi,Mohammadreza Mohammadi,Pargol Golmohammadi,Yassine Mekdad,Mauro Conti,A. Selcuk Uluagac
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 18-29 被引量:7
标识
DOI:10.1109/tsc.2023.3329081
摘要

In the past decades, the rise of artificial intelligence has given us the capabilities to solve the most challenging problems in our day-to-day lives, such as cancer prediction and autonomous navigation. However, these applications might not be reliable if not secured against adversarial attacks. In addition, recent works demonstrated that some adversarial examples are transferable across different models. Therefore, it is crucial to avoid such transferability via robust models that resist adversarial manipulations. In this paper, we propose a feature randomization-based approach that resists eight adversarial attacks targeting deep learning models in the testing phase. Our novel approach consists of changing the training strategy in the target network classifier and selecting random feature samples. We consider the attacker with a Limited-Knowledge and Semi-Knowledge conditions to undertake the most prevalent types of adversarial attacks. We evaluate the robustness of our approach using the well-known UNSW-NB15 datasets that include realistic and synthetic attacks. Afterward, we demonstrate that our strategy outperforms the existing state-of-the-art approach, such as the Most Powerful Attack, which consists of fine-tuning the network model against specific adversarial attacks. Further, we demonstrate the practicality of our approach using the VIPPrint dataset through a comprehensive set of experiments. Finally, our experimental results show that our methodology can secure the target network and resists adversarial attack transferability by over 60%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
1秒前
章德仁完成签到,获得积分10
3秒前
潇洒的书白完成签到,获得积分10
3秒前
阔达晓博发布了新的文献求助10
4秒前
4秒前
6秒前
摩登灰太狼完成签到,获得积分10
6秒前
Lucas应助懒羊羊采纳,获得10
6秒前
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
夏来应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
夏来应助科研通管家采纳,获得10
8秒前
ZD发布了新的文献求助10
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
hanzhipad应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得30
9秒前
科研通AI5应助miao采纳,获得10
9秒前
9秒前
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826191
求助须知:如何正确求助?哪些是违规求助? 3368614
关于积分的说明 10451355
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698907
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065