Rotating machinery fault classification based on one-dimensional residual network with attention mechanism and bidirectional gated recurrent unit

残余物 机制(生物学) 计算机科学 断层(地质) 单位(环理论) 人工智能 模式识别(心理学) 物理 算法 数学 地质学 量子力学 数学教育 地震学
作者
Zhilin Dong,Dezun Zhao,Lingli Cui
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086001-086001 被引量:23
标识
DOI:10.1088/1361-6501/ad41fb
摘要

Abstract Conventional convolutional neural networks (CNNs) predominantly emphasize spatial features of signals and often fall short in prioritizing sequential features. As the number of layers increases, they are prone to issues such as vanishing or exploding gradients, leading to training instability and subsequent erratic fluctuations in loss values and recognition rates. To address this issue, a novel hybrid model, termed one-dimensional (1D) residual network with attention mechanism and bidirectional gated recurrent unit (BGRU) is developed for rotating machinery fault classification. First, a novel 1D residual network with optimized structure is constructed to obtain spatial features and mitigate the gradient vanishing or exploding. Second, the attention mechanism (AM) is designed to catch important impact characteristics for fault samples. Next, temporal features are mined through the BGRU. Finally, feature information is summarized through global average pooling, and the fully connected layer is utilized to output the final classification result for rotating machinery fault diagnosis. The developed technique which is tested on one set of planetary gear data and three different sets of bearing data, has achieved classification accuracy of 98.5%, 100%, 100%, and 100%, respectively. Compared with other methods, including CNN, CNN-BGRU, CNN-AM, and CNN with an AM-BGRU, the proposed technique has the highest recognition rate and stable diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助西子阳采纳,获得10
1秒前
liwei发布了新的文献求助10
1秒前
猫车高手发布了新的文献求助10
2秒前
无花果应助关心则乱采纳,获得10
2秒前
丘比特应助leo采纳,获得10
2秒前
Wu发布了新的文献求助10
2秒前
苏碧萱发布了新的文献求助10
3秒前
小喜完成签到,获得积分10
3秒前
happiness发布了新的文献求助10
3秒前
酷波er应助睿智鱼仔采纳,获得10
3秒前
3秒前
3秒前
Chu发布了新的文献求助10
3秒前
邓紫棋发布了新的文献求助10
4秒前
4秒前
烟花应助武鑫跃采纳,获得10
4秒前
4秒前
Jangz完成签到,获得积分10
4秒前
Lsy发布了新的文献求助10
4秒前
SciGPT应助zyyym采纳,获得10
5秒前
小文发布了新的文献求助10
5秒前
LWL完成签到,获得积分10
5秒前
李爱国应助Rubia采纳,获得10
5秒前
8秒前
8秒前
Forrr发布了新的文献求助10
8秒前
Tao发布了新的文献求助30
8秒前
9秒前
9秒前
xuli21315发布了新的文献求助50
10秒前
刘白告发布了新的文献求助10
11秒前
whyzz发布了新的文献求助10
11秒前
11秒前
11秒前
CodeCraft应助水123采纳,获得10
11秒前
张怡博完成签到 ,获得积分10
12秒前
wuchang2617完成签到,获得积分10
12秒前
西子阳发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293