Bi-DexHands: Towards Human-Level Bimanual Dexterous Manipulation

计算机科学 任务(项目管理) 强化学习 人工智能 机器人学 人机交互 简单(哲学) 对象(语法) 机器人 认识论 哲学 经济 管理
作者
Yuanpei Chen,Yiran Geng,Fangwei Zhong,Jiaming Ji,Jiechuang Jiang,Zongqing Lu,Hao Dong,Yaodong Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (5): 2804-2818 被引量:8
标识
DOI:10.1109/tpami.2023.3339515
摘要

Achieving human-level dexterity in robotics remains a critical open problem. Even simple dexterous manipulation tasks pose significant difficulties due to the high number of degrees of freedom and the need for cooperation among heterogeneous agents (e.g., finger joints). While some researchers have utilized reinforcement learning (RL) to control a single hand in manipulating objects, tasks that require coordinated bimanual cooperation are still under-explored due to the fewer suitable environments, which can result in difficulties and sub-optimal performance. To address these challenges, we introduce Bi-DexHands, a simulator with two dexterous hands featuring 20 bimanual manipulation tasks and thousands of target objects, designed to match various levels of human motor skills based on cognitive science research. We developed Bi-DexHands in Issac Gym, enabling highly efficient RL training at over 30,000 frames per second using a single NVIDIA RTX 3090. Based on Bi-DexHands, we present a comprehensive evaluation of popular RL algorithms in different settings, including single-agent/multi-agent RL, offline RL, multi-task RL, and meta RL. Our findings show that on-policy algorithms, such as PPO, can master simple manipulation tasks that correspond to those of 48-month-old babies, such as catching a flying object or opening a bottle. Furthermore, multi-agent RL can improve the ability to perform manipulations that require skilled bimanual cooperation, such as lifting a pot or stacking blocks. Despite achieving success in individual tasks, current RL algorithms struggle to learn multiple manipulation skills in most multi-task and few-shot learning scenarios. This highlights the need for further research and development within the RL community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
刚刚
liumuyi应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
小慧儿完成签到,获得积分10
1秒前
1秒前
wswddtd完成签到,获得积分10
1秒前
张演基完成签到,获得积分10
2秒前
厮人野完成签到,获得积分10
4秒前
Twinkle发布了新的文献求助30
4秒前
jenningseastera应助wswddtd采纳,获得10
4秒前
烟花应助温乘云采纳,获得10
6秒前
7秒前
JIANYOUFU发布了新的文献求助10
10秒前
11秒前
酷波er应助哇芽采纳,获得10
11秒前
ll发布了新的文献求助10
12秒前
Rollei完成签到,获得积分10
13秒前
科研通AI2S应助龚幻梦采纳,获得10
13秒前
14秒前
14秒前
15秒前
科研通AI5应助萨伊普采纳,获得10
15秒前
wocao完成签到 ,获得积分10
16秒前
coolkid应助是江江哥啊采纳,获得10
17秒前
小二郎应助温暖的定格采纳,获得10
19秒前
科研通AI5应助牧羊青采纳,获得10
19秒前
19秒前
JIANYOUFU完成签到,获得积分10
19秒前
xwy发布了新的文献求助10
19秒前
wwj完成签到,获得积分10
19秒前
张张发布了新的文献求助10
20秒前
xing完成签到,获得积分10
21秒前
21秒前
乐乐应助Frank采纳,获得10
22秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844092
求助须知:如何正确求助?哪些是违规求助? 3386468
关于积分的说明 10545405
捐赠科研通 3107201
什么是DOI,文献DOI怎么找? 1711524
邀请新用户注册赠送积分活动 824121
科研通“疑难数据库(出版商)”最低求助积分说明 774478