Interpretable machine learning approach for exploring process-structure-property relationships in metal additive manufacturing

材料科学 过程(计算) 财产(哲学) 金属 制造工艺 人工智能 机器学习 制造工程 工艺工程 冶金 计算机科学 复合材料 工程类 哲学 认识论 操作系统
作者
Qian Liu,Wenliang Chen,Vladislav Yakubov,Jamie J. Kruzic,Chunhui Wang,Xiaopeng Li
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:85: 104187-104187 被引量:12
标识
DOI:10.1016/j.addma.2024.104187
摘要

Process-structure-property (PSP) relationships are critical to the optimization of manufacturing processes, but establishing these relationships typically involves time- and cost- consuming experiments, especially for additive manufacturing (AM) due to the large number of process parameters involved. In this study, we develop a novel and interpretable machine learning approach for predicting, optimizing, and expanding the process window of laser powder bed fusion (LPBF) while simultaneously establishing PSP relationships, using AlSi10Mg as an example. Our iterative, error-targeted method substantially decreases the amount of experimentation required. Gaussian process regression (GPR) was employed as the predictive model, incorporating multiple input variables (e.g., process parameters, relative density, melt pool morphology, cellular structure, and grain structure), for predicting three mechanical properties (i.e., yield strength, ultimate tensile strength, and % elongation). A comparison of model predictions and experimental data outside the training scope reveals that the prediction accuracy can be improved with higher dimensional inputs and further enhanced by a multi-output model that accounts for correlations between the different mechanical properties. Additionally, the GPR kernel's hyperparameter for each input enables feature selection and model interpretability. The proposed approach can assist with finding the most critical variables affecting mechanical performance, establishing the PSP relationships of AM fabricated alloys, and providing guidance for tailoring the final properties. The methodology presented in this study can be applied to various AM techniques and materials to broaden the process window to achieve previously unattainable mechanical properties, as well as to gain a deeper understanding of the PSP relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五本笔记完成签到 ,获得积分10
刚刚
husky完成签到,获得积分10
刚刚
susu发布了新的文献求助10
刚刚
流砂完成签到,获得积分10
刚刚
xiahou完成签到,获得积分10
1秒前
asdfqwer应助limo采纳,获得10
2秒前
wanxiqianxia完成签到,获得积分10
3秒前
高高的山兰完成签到 ,获得积分10
3秒前
积极的白亦完成签到,获得积分10
7秒前
旺阿旺完成签到,获得积分10
9秒前
聪明的哈密瓜完成签到,获得积分10
9秒前
struggle完成签到 ,获得积分10
10秒前
冷静的访天完成签到 ,获得积分10
11秒前
秋qiu完成签到 ,获得积分20
12秒前
小马甲应助害羞的天真采纳,获得10
13秒前
小王同学完成签到,获得积分10
15秒前
浮游应助科研小白一枚采纳,获得10
17秒前
五十完成签到 ,获得积分10
17秒前
十个勤天完成签到,获得积分10
18秒前
21秒前
Yingkun_Xu完成签到,获得积分10
21秒前
沧海云完成签到 ,获得积分0
22秒前
恒星完成签到,获得积分10
22秒前
853225598完成签到,获得积分10
22秒前
macarthur发布了新的文献求助10
24秒前
浮光完成签到 ,获得积分10
25秒前
大力蓝完成签到,获得积分10
26秒前
净净子完成签到 ,获得积分10
26秒前
28秒前
乐观银耳汤完成签到,获得积分10
28秒前
奋斗朋友完成签到 ,获得积分10
28秒前
苏梗完成签到 ,获得积分10
30秒前
31秒前
lay完成签到,获得积分10
33秒前
小刘完成签到,获得积分10
35秒前
更好的我完成签到,获得积分10
36秒前
36秒前
杨美琪完成签到,获得积分10
39秒前
HTniconico完成签到 ,获得积分10
41秒前
大糖糕僧完成签到,获得积分10
41秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212620
求助须知:如何正确求助?哪些是违规求助? 4388725
关于积分的说明 13664435
捐赠科研通 4249316
什么是DOI,文献DOI怎么找? 2331521
邀请新用户注册赠送积分活动 1329244
关于科研通互助平台的介绍 1282658