Brain and Cognitive Science Inspired Deep Learning: A Comprehensive Survey

计算机科学 认知 深度学习 数据科学 人工智能 认知科学 神经科学 心理学
作者
Zihan Zhang,Xiao Ding,Xia Liang,Yusheng Zhou,Bing Qin,Ting Liu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-23
标识
DOI:10.1109/tkde.2025.3527551
摘要

Deep learning (DL) is increasingly viewed as a foundational methodology for advancing Artificial Intelligence (AI). However, its interpretability remains limited, and it often underperforms in certain fields due to its lack of human-like characteristics. Consequently, leveraging insights from Brain and Cognitive Science (BCS) to understand and advance DL has become a focal point for researchers in the DL community. However, BCS is a diverse discipline where existing studies often concentrate on cognitive theories within their respective domains. These theories are typically grounded in certain assumptions, complicating comparisons between different approaches. Therefore, this review is intended to provide a comprehensive landscape of more than 300 papers on the intersection of DL and BCS grounded in DL community. Unlike previous reviews that based on sub-disciplines of Cognitive Science, this article aims to establish a unified framework encompassing all aspects of DL inspired by BCS, offering insights into the symbiotic relationship between DL and BCS. Additionally, we present a forward-looking perspective on future research directions, with the intention of inspiring further advancements in AI research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助念念采纳,获得10
1秒前
Lucas应助Fighting采纳,获得10
1秒前
苏格拉底的嘲笑完成签到,获得积分10
1秒前
lijianguo发布了新的文献求助10
2秒前
DJ完成签到,获得积分10
2秒前
wyc发布了新的文献求助10
2秒前
小廉发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
打打应助了了采纳,获得10
4秒前
zengyiqiao发布了新的文献求助10
4秒前
忧郁小刺猬完成签到,获得积分10
5秒前
科研废物发布了新的文献求助10
5秒前
哈哈哈完成签到,获得积分10
5秒前
谨慎的啤酒完成签到 ,获得积分10
5秒前
胖飞飞发布了新的文献求助10
6秒前
蔡毛线发布了新的文献求助10
6秒前
王小美发布了新的文献求助10
7秒前
复杂尔蓝完成签到 ,获得积分10
7秒前
冫封的泪完成签到,获得积分10
8秒前
虚幻龙猫完成签到,获得积分10
8秒前
自强不息完成签到,获得积分10
8秒前
lxlcx应助小亮哈哈采纳,获得20
8秒前
小铃铛完成签到,获得积分10
8秒前
chenkaixin完成签到,获得积分10
9秒前
结实煎饼完成签到,获得积分10
9秒前
9秒前
脑洞疼应助llfire采纳,获得10
9秒前
SciGPT应助frank采纳,获得10
10秒前
jun发布了新的文献求助20
10秒前
小洋同学可能不在完成签到,获得积分10
11秒前
酷波er应助明亮的尔竹采纳,获得10
11秒前
了了完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
神勇初瑶发布了新的文献求助10
13秒前
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827980
求助须知:如何正确求助?哪些是违规求助? 3370256
关于积分的说明 10462337
捐赠科研通 3090205
什么是DOI,文献DOI怎么找? 1700266
邀请新用户注册赠送积分活动 817776
科研通“疑难数据库(出版商)”最低求助积分说明 770441