已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning approach for subject-dependent & subject-independent emotion recognition using brain signals with dimensional emotion model

人工智能 支持向量机 计算机科学 朴素贝叶斯分类器 机器学习 卷积神经网络 阿达布思 价(化学) 情绪分类 模式识别(心理学) 二元分类 随机森林 人工神经网络 唤醒 语音识别 心理学 物理 量子力学 神经科学
作者
Ruchilekha,Manoj Kumar Singh,Mona Singh
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104928-104928 被引量:6
标识
DOI:10.1016/j.bspc.2023.104928
摘要

This paper aims to design a deep-learning based approach in combination with machine learning classifiers for two different perspectives. In first perspective, the performance is evaluated when training and testing are performed on same subject called as subject–dependent evaluation criteria. In second perspective, the performance is evaluated when training and testing are performed on different subjects called as subject–independent evaluation criteria. For each perspective, three label cases are made using valence, arousal, and dominance for recognizing human emotions: i) Binary/ 2-class, ii) Quad/ 4-class, and iii) Octal/ 8-class classifications. The experiment is performed on two publicly available datasets DEAP and DREAMER. For emotion recognition, firstly the brain signals are processed and then features are extracted using our proposed deep convolutional neural network (DCNN) architecture. These extracted features are used for emotion recognition using classifiers namely Naive Bayes (NB), decision tree (DT), k-Nearest Neighborhood (KNN), Support Vector Machine (SVM), AdaBoost (AB), Random Forest (RF), Neural Networks (NN), Long-short term memory (LSTM), and Bidirectional-LSTM (BiLSTM). The experimental results give more robust classification for subject-independent emotion recognition in comparison to subject-dependent emotion recognition, with DCNN + NN for binary and DCNN + SVM for quad & octal classification. Moreover, experimental results show that arousal and dominance play an important role in emotion recognition in contrary to valence and arousal as reported in literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
迅速文龙完成签到,获得积分10
6秒前
毛毛发布了新的文献求助10
9秒前
10秒前
早晚炸了学校完成签到 ,获得积分10
10秒前
11秒前
Wang完成签到,获得积分10
12秒前
科研通AI5应助舒适安阳采纳,获得10
12秒前
曲微暖完成签到,获得积分10
13秒前
橘子完成签到,获得积分10
14秒前
我是老大应助vimeid采纳,获得10
15秒前
16秒前
brisk完成签到,获得积分10
18秒前
CodeCraft应助qiu采纳,获得10
18秒前
19秒前
迷路的阳阳完成签到 ,获得积分10
19秒前
FashionBoy应助修狗采纳,获得10
20秒前
黑糖珍珠完成签到 ,获得积分10
20秒前
yiyizhou发布了新的文献求助10
22秒前
23秒前
23秒前
舒适安阳发布了新的文献求助10
25秒前
bc应助有魅力的井采纳,获得30
26秒前
27秒前
Li发布了新的文献求助10
27秒前
28秒前
28秒前
SPUwangshunfeng完成签到,获得积分10
29秒前
医者修心完成签到,获得积分10
30秒前
30秒前
CipherSage应助顶级科学家采纳,获得10
30秒前
大个应助帅气的宛凝采纳,获得10
33秒前
buta发布了新的文献求助10
35秒前
Robin发布了新的文献求助10
35秒前
35秒前
心灵美大侠完成签到,获得积分10
35秒前
医者修心发布了新的文献求助10
37秒前
39秒前
拼搏的松鼠完成签到,获得积分10
39秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830243
求助须知:如何正确求助?哪些是违规求助? 3372717
关于积分的说明 10474451
捐赠科研通 3092387
什么是DOI,文献DOI怎么找? 1702069
邀请新用户注册赠送积分活动 818759
科研通“疑难数据库(出版商)”最低求助积分说明 771066