Railway accident prediction strategy based on ensemble learning

阿达布思 集成学习 人工神经网络 计算机科学 机器学习 人工智能 推论 数据挖掘 预测建模 工程类 支持向量机
作者
Haining Meng,Xinyu Tong,Yi Zheng,Guo Xie,Wenjiang Ji,Xinhong Hei
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:176: 106817-106817 被引量:14
标识
DOI:10.1016/j.aap.2022.106817
摘要

Railway accident prediction is of great significance for establishing an early warning mechanism and preventing the occurrences of accidents. Safety agencies rely on prediction models to design railroad risk management strategies. Based on historical railway accident data, an ensemble learning strategy for accident prediction is proposed. Firstly, an improved K-nearest neighbors (KNN) data imputation algorithm is proposed to solve the problem of missing data in the dataset. Then, to reduce the impact of imbalanced data on prediction performance, an AdaBoost-Bagging method is presented. Finally, according to the feature importance in the prediction model, accident features are ranked to identify new insights into the cause of the accident. The AdaBoost-Bagging prediction method is applied to the Federal Railroad Administration (FRA) dataset. The application results show that, compared with Artificial Neural Network (ANN), XGBoost, GBDT, Stacking and AdaBoost methods, AdaBoost-Bagging method has a smaller prediction error and faster inference time in predicting railway accidents. Accuracy, Precision, Recall and F1-score are 0.879, 0.879, 0.883 and 0.881 respectively, and the inference time is reduced by 23.38%, 12.15%, 6.66%, 3.17% and 11.41% respectively. The prediction method can well mine important features of railway accidents without knowing the accident mechanism or the relationship between various railway accidents and factors, e.g., the critic risk factors related to derailment and collision accidents are investigated in the prediction. The findings will be helpful to the prevention and management of railway accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵金龙发布了新的文献求助10
1秒前
快乐芷珊发布了新的文献求助10
2秒前
陈词滥调发布了新的文献求助10
5秒前
5秒前
Vii发布了新的文献求助10
9秒前
12秒前
14秒前
科研通AI5应助赵金龙采纳,获得10
15秒前
16秒前
小羊zhou完成签到,获得积分10
17秒前
17秒前
JamesPei应助陈词滥调采纳,获得10
17秒前
18秒前
19秒前
zzn完成签到,获得积分10
19秒前
镜花水月完成签到,获得积分10
19秒前
20秒前
澍澍发布了新的文献求助10
20秒前
hyl发布了新的文献求助10
21秒前
zzn发布了新的文献求助10
22秒前
23秒前
23秒前
东山道友发布了新的文献求助10
24秒前
英姑应助PhD采纳,获得10
25秒前
sai完成签到,获得积分20
25秒前
26秒前
JamesPei应助雨诺采纳,获得10
27秒前
Starry完成签到,获得积分10
28秒前
淼淼嘉嘉发布了新的文献求助10
29秒前
Bluecrane完成签到,获得积分10
31秒前
周小鱼发布了新的文献求助10
32秒前
玼桃树完成签到 ,获得积分10
33秒前
快乐科研狗完成签到,获得积分10
34秒前
彭于晏应助白之玉采纳,获得10
34秒前
39秒前
aaaaa完成签到,获得积分10
39秒前
_呱_完成签到,获得积分10
39秒前
语秋完成签到,获得积分10
41秒前
JamesPei应助嗯qq采纳,获得10
43秒前
咖啡先生发布了新的文献求助10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365946
关于积分的说明 10438454
捐赠科研通 3085109
什么是DOI,文献DOI怎么找? 1697172
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462