A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks

计算机科学 无线 无线网络 资源配置 电信线路 计算机网络 基站 Wi-Fi阵列 选择算法 算法 机器学习 选择(遗传算法) 电信
作者
Mingzhe Chen,Zhaohui Yang,Walid Saad,Changchuan Yin,H. Vincent Poor,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 269-283 被引量:1193
标识
DOI:10.1109/twc.2020.3024629
摘要

In this article, the problem of training federated learning (FL) algorithms over a realistic wireless network is studied. In the considered model, wireless users execute an FL algorithm while training their local FL models using their own data and transmitting the trained local FL models to a base station (BS) that generates a global FL model and sends the model back to the users. Since all training parameters are transmitted over wireless links, the quality of training is affected by wireless factors such as packet errors and the availability of wireless resources. Meanwhile, due to the limited wireless bandwidth, the BS needs to select an appropriate subset of users to execute the FL algorithm so as to build a global FL model accurately. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize an FL loss function that captures the performance of the FL algorithm. To seek the solution, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of wireless factors on FL. Then, based on the expected convergence rate of the FL algorithm, the optimal transmit power for each user is derived, under a given user selection and uplink resource block (RB) allocation scheme. Finally, the user selection and uplink RB allocation is optimized so as to minimize the FL loss function. Simulation results show that the proposed joint federated learning and communication framework can improve the identification accuracy by up to 1.4%, 3.5% and 4.1%, respectively, compared to: 1) An optimal user selection algorithm with random resource allocation, 2) a standard FL algorithm with random user selection and resource allocation, and 3) a wireless optimization algorithm that minimizes the sum packet error rates of all users while being agnostic to the FL parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助zz采纳,获得10
刚刚
刚刚
nihao发布了新的文献求助10
刚刚
自由的凛发布了新的文献求助10
2秒前
小贩发布了新的文献求助10
2秒前
千迁完成签到,获得积分10
4秒前
isssa完成签到 ,获得积分10
4秒前
4秒前
5秒前
培培完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
qy完成签到,获得积分10
5秒前
6秒前
Bluebulu完成签到,获得积分10
6秒前
梓喵发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
9秒前
是小王ya完成签到,获得积分10
9秒前
9秒前
方咖啡应助ALLUDO采纳,获得10
9秒前
蝶步韶华发布了新的文献求助10
10秒前
10秒前
123发布了新的文献求助10
11秒前
12秒前
木兰换装发布了新的文献求助10
12秒前
yang发布了新的文献求助10
12秒前
myth完成签到,获得积分10
12秒前
咋能真发布了新的文献求助10
13秒前
月眠眠发布了新的文献求助10
13秒前
14秒前
王豪发布了新的文献求助50
14秒前
无花果应助年轻的宛采纳,获得10
15秒前
高高发布了新的文献求助10
15秒前
危机的慕卉完成签到 ,获得积分10
15秒前
16秒前
龍焱完成签到,获得积分10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095136
求助须知:如何正确求助?哪些是违规求助? 3633294
关于积分的说明 11516572
捐赠科研通 3344025
什么是DOI,文献DOI怎么找? 1837912
邀请新用户注册赠送积分活动 905421
科研通“疑难数据库(出版商)”最低求助积分说明 823171