Brain variability in dynamic resting-state networks identified by fuzzy entropy: a scalp EEG study

静息状态功能磁共振成像 计算机科学 脑电图 人工智能 模式识别(心理学) 颞叶 模糊逻辑 认知 近似熵 传递熵 熵(时间箭头) 样本熵 最大熵原理 神经科学 心理学 癫痫 物理 量子力学
作者
Fali Li,Lin Jiang,Yuanyuan Liao,Yajing Si,Chanli Yi,Yangsong Zhang,Xianjun Zhu,Zhenglin Yang,Dezhong Yao,Zehong Cao,Peng Xu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046097-046097 被引量:37
标识
DOI:10.1088/1741-2552/ac0d41
摘要

Abstract Objective. Exploring the temporal variability in spatial topology during the resting state attracts growing interest and becomes increasingly useful to tackle the cognitive process of brain networks. In particular, the temporal brain dynamics during the resting state may be delineated and quantified aligning with cognitive performance, but few studies investigated the temporal variability in the electroencephalogram (EEG) network as well as its relationship with cognitive performance. Approach. In this study, we proposed an EEG-based protocol to measure the nonlinear complexity of the dynamic resting-state network by applying the fuzzy entropy. To further validate its applicability, the fuzzy entropy was applied into simulated and two independent datasets (i.e. decision-making and P300). Main results. The simulation study first proved that compared to the existing methods, this approach could not only exactly capture the pattern dynamics in time series but also overcame the magnitude effect of time series. Concerning the two EEG datasets, the flexible and robust network architectures of the brain cortex at rest were identified and distributed at the bilateral temporal lobe and frontal/occipital lobe, respectively, whose variability metrics were found to accurately classify different groups. Moreover, the temporal variability of resting-state network property was also either positively or negatively related to individual cognitive performance. Significance. This outcome suggested the potential of fuzzy entropy for evaluating the temporal variability of the dynamic resting-state brain networks, and the fuzzy entropy is also helpful for uncovering the fluctuating network variability that accounts for the individual decision differences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dspan发布了新的文献求助10
1秒前
shidewu完成签到,获得积分10
2秒前
2秒前
HL完成签到,获得积分10
3秒前
sevii发布了新的文献求助10
3秒前
史萌完成签到,获得积分10
3秒前
4秒前
4秒前
斯文败类应助莫大采纳,获得10
4秒前
李兴雅完成签到,获得积分10
5秒前
RRR关闭了RRR文献求助
6秒前
6秒前
6秒前
liuliu完成签到,获得积分10
6秒前
Lisss发布了新的文献求助10
6秒前
Xumei完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
酷波er应助小骄傲采纳,获得10
9秒前
9秒前
stella完成签到,获得积分10
10秒前
科研通AI2S应助sss采纳,获得10
10秒前
laura发布了新的文献求助10
11秒前
笨笨的仙人掌完成签到,获得积分10
11秒前
Cilia发布了新的文献求助30
11秒前
11秒前
12秒前
冷傲的如凡完成签到,获得积分10
12秒前
小王发布了新的文献求助10
13秒前
秋秋完成签到,获得积分10
13秒前
易楠完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
小巧灵枫完成签到 ,获得积分10
14秒前
妙奇完成签到,获得积分10
14秒前
yiwangwuqian完成签到,获得积分10
14秒前
揽月发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439708
求助须知:如何正确求助?哪些是违规求助? 4550755
关于积分的说明 14226292
捐赠科研通 4471853
什么是DOI,文献DOI怎么找? 2450516
邀请新用户注册赠送积分活动 1441452
关于科研通互助平台的介绍 1417930