大数据                        
                
                                
                        
                            计算机科学                        
                
                                
                        
                            情绪分析                        
                
                                
                        
                            杠杆(统计)                        
                
                                
                        
                            数据科学                        
                
                                
                        
                            预测分析                        
                
                                
                        
                            分析                        
                
                                
                        
                            供应链                        
                
                                
                        
                            商业智能                        
                
                                
                        
                            需求预测                        
                
                                
                        
                            供应链管理                        
                
                                
                        
                            产品(数学)                        
                
                                
                        
                            人工智能                        
                
                                
                        
                            营销                        
                
                                
                        
                            数据挖掘                        
                
                                
                        
                            业务                        
                
                                
                        
                            数学                        
                
                                
                        
                            几何学                        
                
                        
                    
            作者
            
                Raymond Y.K. Lau,Wenping Zhang,Wei Xu            
         
                    
        
    
            
        
                
            摘要
            
            While much research work has been devoted to supply chain management and demand forecast, research on designing big data analytics methodologies to enhance sales forecasting is seldom reported in existing literature. The big data of consumer‐contributed product comments on online social media provide management with unprecedented opportunities to leverage collective consumer intelligence for enhancing supply chain management in general and sales forecasting in particular. The main contributions of our work presented in this study are as follows: (1) the design of a novel big data analytics methodology that is underpinned by a parallel aspect‐oriented sentiment analysis algorithm for mining consumer intelligence from a huge number of online product comments; (2) the design and the large‐scale empirical test of a sentiment enhanced sales forecasting method that is empowered by a parallel co‐evolutionary extreme learning machine. Based on real‐world big datasets, our experimental results confirm that consumer sentiments mined from big data can improve the accuracy of sales forecasting across predictive models and datasets. The managerial implication of our work is that firms can apply the proposed big data analytics methodology to enhance sales forecasting performance. Thereby, the problem of under/over‐stocking is alleviated and customer satisfaction is improved.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI