Learning transportation mode from raw gps data for geographic applications on the web

全球定位系统 计算机科学 模式(计算机接口) 地理信息系统 原始数据 万维网 遥感 人机交互 电信 地理 程序设计语言
作者
Yu Zheng,Like Liu,Longhao Wang,Xing Xie
标识
DOI:10.1145/1367497.1367532
摘要

Geographic information has spawned many novel Web applications where global positioning system (GPS) plays important roles in bridging the applications and end users. Learning knowledge from users' raw GPS data can provide rich context information for both geographic and mobile applications. However, so far, raw GPS data are still used directly without much understanding. In this paper, an approach based on supervised learning is proposed to automatically infer transportation mode from raw GPS data. The transportation mode, such as walking, driving, etc., implied in a user's GPS data can provide us valuable knowledge to understand the user. It also enables context-aware computing based on user's present transportation mode and design of an innovative user interface for Web users. Our approach consists of three parts: a change point-based segmentation method, an inference model and a post-processing algorithm based on conditional probability. The change point-based segmentation method was compared with two baselines including uniform duration based and uniform length based methods. Meanwhile, four different inference models including Decision Tree, Bayesian Net, Support Vector Machine (SVM) and Conditional Random Field (CRF) are studied in the experiments. We evaluated the approach using the GPS data collected by 45 users over six months period. As a result, beyond other two segmentation methods, the change point based method achieved a higher degree of accuracy in predicting transportation modes and detecting transitions between them. Decision Tree outperformed other inference models over the change point based segmentation method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gffh完成签到,获得积分10
刚刚
石会发发布了新的文献求助10
刚刚
我是老大应助个性笑白采纳,获得10
1秒前
heyanmin发布了新的文献求助10
1秒前
flyingsoul发布了新的文献求助20
2秒前
核桃完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
魔幻的砖头完成签到,获得积分10
5秒前
心斋发布了新的文献求助10
5秒前
石会发完成签到,获得积分10
6秒前
悠明夜月完成签到 ,获得积分10
7秒前
范先生完成签到,获得积分10
7秒前
打打应助娇气的妙之采纳,获得10
7秒前
十二完成签到,获得积分20
7秒前
山河已秋完成签到,获得积分10
8秒前
XCL发布了新的文献求助50
8秒前
猪猪猪完成签到,获得积分10
8秒前
科研人发布了新的文献求助10
9秒前
9秒前
zzzzzz完成签到 ,获得积分10
9秒前
取法乎上发布了新的文献求助10
10秒前
大气乐儿完成签到,获得积分10
10秒前
10秒前
Yangyang完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
FashionBoy应助zxx111采纳,获得10
12秒前
甜甜丑发布了新的文献求助10
12秒前
酷酷银耳汤完成签到,获得积分10
12秒前
惠小之完成签到,获得积分10
14秒前
14秒前
14秒前
Jasper应助H丶化羽采纳,获得10
14秒前
zhangxu09a完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
P. J. Flory: "Principles of Polymer Chemistry" Cornell Univ. 1953 200
Information Security and Cryptology Inscrypt 2024 Part I 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827847
求助须知:如何正确求助?哪些是违规求助? 3369989
关于积分的说明 10460568
捐赠科研通 3089839
什么是DOI,文献DOI怎么找? 1700055
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770325