已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive partition based underwater polarization image restoration method for complex objects

作者
Shenghui Zhang,Ronghua Li,Yuan-Yi Fan,Haotian Cao,Dazhi Wang,Ran Zhang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 40410-40410
标识
DOI:10.1038/s41598-025-93827-3
摘要

Underwater imaging methods based on scattering models usually require the estimation of the target's polarization information. Targets in real environments exhibit complex polarization characteristics, and these characteristics are also related to the material properties and structures. In a single scene, both high-polarization and low-polarization targets may coexist, and a single target may also contain both high-polarization and low-polarization regions. Segmenting the target areas and computing for each region can effectively enhance the quality of the image's reconstruction. In this paper, we proposes an adaptive partition-based underwater polarization imaging method for complex objects. This method enables adaptive partition calculations for target images with complex polarization characteristics. It utilizes an image contribution operator to describe the contribution of regions to the quality of image recovery. The image contribution operator comprises a region size operator and an error control operator, which characterize the proportion of the partition and the polarization light component. By using the numerical value of the image contribution operator, the target image can be adaptively partitioned, allowing for individual estimation of the target's reflection light polarization for each region. This method addresses the issue of poor image recovery for targets with complex polarization characteristics. Experimental results from various underwater scenarios show that this method can achieve good recovery results for complex targets and demonstrate robustness in different levels of turbid environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
6秒前
8秒前
EDEN发布了新的文献求助10
9秒前
9秒前
舒适平文完成签到 ,获得积分10
9秒前
10秒前
粥粥sqk发布了新的文献求助10
10秒前
一方完成签到 ,获得积分10
12秒前
SHIRO发布了新的文献求助10
13秒前
w5566完成签到 ,获得积分10
15秒前
16秒前
科研打怪升级中完成签到,获得积分20
18秒前
18秒前
沉默访冬完成签到,获得积分10
19秒前
21秒前
小艺发布了新的文献求助10
22秒前
注恤明完成签到,获得积分10
23秒前
ShangQ完成签到,获得积分10
24秒前
杨武天一发布了新的文献求助10
26秒前
小葡萄完成签到 ,获得积分10
27秒前
jiaojiao完成签到 ,获得积分10
28秒前
shinn发布了新的文献求助50
28秒前
LALA发布了新的文献求助10
30秒前
科研通AI6应助风华笔墨采纳,获得10
30秒前
JamesPei应助杨旭采纳,获得10
31秒前
DChen完成签到 ,获得积分10
32秒前
obsession完成签到 ,获得积分10
34秒前
不安青牛应助机智的夜云采纳,获得10
37秒前
歪歪yyyyc完成签到,获得积分10
37秒前
JFy完成签到 ,获得积分10
39秒前
40秒前
jcl完成签到,获得积分10
40秒前
41秒前
42秒前
43秒前
Miianlli完成签到 ,获得积分10
44秒前
Owen应助科研通管家采纳,获得10
44秒前
酷波er应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401154
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078818
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792