Enhancing Collaborative Information with Contrastive Learning for Session-based Recommendation

会话(web分析) 利用 嵌入 特征学习 计算机科学 杠杆(统计) 图形 平滑的 特征(语言学) 情报检索 光学(聚焦) 机器学习 人工智能 理论计算机科学 万维网 语言学 哲学 物理 计算机安全 光学 计算机视觉
作者
Guojia An,Jing Sun,Yuhan Yang,Fuming Sun
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (4): 103738-103738 被引量:8
标识
DOI:10.1016/j.ipm.2024.103738
摘要

Session-based recommendation (SBR) aims to exploit the session representation generated by combining item embedding and session embedding processes to recommend the next item for an anonymous user. However, most existing studies fail to fully leverage graph structures for hierarchical feature learning during item embedding. Moreover, expert experience is often relied on to set the focus area during session embeddings, which may inevitably introduce noisy information. Additionally, some models introduce inter-session collaborative information for enriching session representations but often overlook the impact of repeated item information within a session. To solve the above problems, we propose Enhancing Collaborative Information with Contrastive Learning for Session-based Recommendation, termed ECCL. Specifically, we construct a residual enhanced multi-level gated graph neural network, which captures the multi-level feature information in the graph structure and alleviates the over-smoothing problem. Meanwhile, the ECCL automatically selects the focus area length by introducing an automatic search module, such that the effect of noisy information during session embedding can be minimized. Moreover, we design a novel repetitive information-aware inter-session similarity learning module that focuses on balancing the positive and negative impacts of repeated items to fully exploit the rich inter-session collaborative information. Extensive experimental results show that the ECCL performs significantly better than other state-of-the-art methods in terms of HR@20, HR@10, MRR@20, and MRR@10, with average enhancements reaching 28.49%, 32.77%, 24.65%, and 24.95%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤雨泽完成签到,获得积分10
1秒前
花花完成签到,获得积分10
1秒前
sscihard发布了新的文献求助30
5秒前
9秒前
包包完成签到,获得积分10
9秒前
9秒前
乐乐乐乐乐乐应助chen1999采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
gaochi完成签到,获得积分10
13秒前
13秒前
英勇凝蝶发布了新的文献求助10
14秒前
乔垣结衣发布了新的文献求助10
14秒前
wang发布了新的文献求助10
15秒前
求求科研完成签到,获得积分10
17秒前
深情安青应助AoAoo采纳,获得10
17秒前
小二郎应助贪玩的笑阳采纳,获得10
17秒前
英俊的铭应助Alina1874采纳,获得10
17秒前
18秒前
孩子气发布了新的文献求助10
18秒前
Ava应助原子采纳,获得10
19秒前
19秒前
英俊的铭应助Bruial采纳,获得30
19秒前
20秒前
Weixin1998发布了新的文献求助10
20秒前
20秒前
小宁应助SXH采纳,获得10
21秒前
明芷蝶应助顺心绮兰采纳,获得10
22秒前
桐桐应助鸭子不是鸭采纳,获得10
22秒前
like发布了新的文献求助10
23秒前
Summer完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
25秒前
个性归尘应助DAYDAY采纳,获得10
26秒前
StonyinSICAU发布了新的文献求助10
26秒前
十五发布了新的文献求助10
27秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828462
求助须知:如何正确求助?哪些是违规求助? 3370778
关于积分的说明 10464992
捐赠科研通 3090721
什么是DOI,文献DOI怎么找? 1700503
邀请新用户注册赠送积分活动 817885
科研通“疑难数据库(出版商)”最低求助积分说明 770571