Spatially distributed and interconnected porous architectures for dental implants

小旋翼机 材料科学 选择性激光熔化 生物医学工程 多孔性 最小曲面 纳米技术 复合材料 数学 聚合物 几何学 微观结构 医学 共聚物
作者
Rana Dabaja,W. Benton Swanson,Sun‐Yung Bak,Gustavo Mendonça,Yuji Mishina,Mihaela Banu
出处
期刊:International Journal of Implant Dentistry [Springer Science+Business Media]
卷期号:11 (1)
标识
DOI:10.1186/s40729-025-00618-6
摘要

Abstract Purpose Patients with pre-existing medical conditions that impair bone integrity face challenges in dental implant success due to compromised osseointegration. This study evaluates three titanium interconnected porous architectures: the TPMS solid gyroid, TPMS sheet gyroid, and Voronoi stochastic lattice. We aim to assess manufacturability, design controllability, and cellular interactions to identify an optimal architecture that enhances cellular behavior with the potential to strengthen bone-to-implant contact. Methods Three porous architectures were designed and compared: the two variants of the uniform, periodic triply periodic minimal surface (TPMS) gyroid, and the random, non-uniform Voronoi stochastic lattice. The porous constructs were fabricated using selective laser melting (SLM) and evaluated using microcomputed tomography (microCT) for porosity, manufacturability, and permeability. In vitro experiments used primary bone marrow stromal cells (BMSCs) isolated from 8-week-old wild type C57BL6/J mice. These cells were seeded onto the SLM-fabricated porous architectures and evaluated for adhesion using scanning electron microscopy (SEM) and RNA extraction. Cell trajectory was profiled using fluorescent confocal microscopy. Results Selective laser melting (SLM) successfully fabricated all three porous architectures, with the TPMS solid gyroid exhibiting the highest manufacturing resolution, controllability, and the most uniform pore distribution. Computational fluid dynamics (CFD) analysis showed that its permeability outperformed both the TPMS sheet gyroid and stochastic Voronoi architectures. In vitro cell culturing demonstrated superior cell behavior in the TPMS solid gyroid scaffold. RNA quantification after 72 h of culture showed that cells are most adherent to the TPMS solid gyroid, demonstrating a 4-fold increase in RNA quantity compared to the fully dense (control). Additionally, cell trajectory analysis indicated enhanced cell infiltration and cellularization within the pore channels for the TPMS solid gyroid architecture. Conclusion This research demonstrates that inducing an interconnected porous architecture into a titanium construct enhances cellular behavior compared to a traditional dense implant. The TPMS solid gyroid architecture showed superior manufacturability, making it a promising solution to improve dental implant success in patients with compromised bone integrity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
arcremnant完成签到,获得积分10
3秒前
TLJ完成签到,获得积分10
3秒前
zy177完成签到,获得积分10
7秒前
7秒前
葡萄完成签到 ,获得积分10
10秒前
龙虾侠完成签到,获得积分10
10秒前
lejunia发布了新的文献求助10
11秒前
小遇完成签到 ,获得积分10
11秒前
SpannerJun发布了新的文献求助10
12秒前
14秒前
14秒前
包容的靖琪完成签到,获得积分10
14秒前
乐乐应助suuu采纳,获得30
15秒前
15秒前
jian完成签到,获得积分10
16秒前
哈哈哈哈完成签到 ,获得积分10
16秒前
优翎发布了新的文献求助10
16秒前
asdfqwer发布了新的文献求助10
17秒前
zrkkk完成签到,获得积分10
18秒前
vwvw发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
21秒前
阳先生发布了新的文献求助10
22秒前
一只小锦鲤鱼完成签到,获得积分10
23秒前
SpannerJun完成签到,获得积分10
23秒前
魏聪完成签到,获得积分20
23秒前
25秒前
25秒前
魏聪发布了新的文献求助10
26秒前
李健应助lejunia采纳,获得50
28秒前
邱晨凯发布了新的文献求助10
29秒前
xin发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
槿言完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309804
求助须知:如何正确求助?哪些是违规求助? 4454272
关于积分的说明 13859615
捐赠科研通 4342240
什么是DOI,文献DOI怎么找? 2384398
邀请新用户注册赠送积分活动 1378848
关于科研通互助平台的介绍 1347076