Knowledge‐guided digital twin modeling method of generating hierarchical scenes for a high‐speed railway

计算机科学 过程(计算) 可视化建模 人工智能 图形 知识建模 数据挖掘 领域知识 理论计算机科学 统一建模语言 操作系统 程序设计语言 软件
作者
Zhonghuan Su,Zhao Wen,Zaizhu Han,Jun Zhu,Qing Zhu,Xu Zhu,Dejun Feng,Young-Eun Song,Shiji Song,Bing Zhang,Fengpin Jia,Yakun Xie,Yushan Quan,Junhu Zhang,Weilian Li
出处
期刊:Transactions in Gis [Wiley]
标识
DOI:10.1111/tgis.13110
摘要

Abstract China's railway construction is rapidly transitioning toward integrated management of “stakeholders, management elements, and management processes”. Therefore, comprehensive and whole‐process digital twin scene modeling is urgently needed for intelligent railway construction. However, the requirements of three‐dimensional scenes in different stages vary hierarchically, resulting in a lack of construction semantics and limited universality in modeling. This article proposes a knowledge‐guided digital twin modeling method of hierarchical scenes for a high‐speed railway. We first build a knowledge graph of “knowledge‐model‐data” to achieve an accurate and hierarchical description of railway scenes. We then establish a parameter‐driven modeling method that integrates knowledge guidance and primitive combination to generate a display scene and a virtual design scene automatically. Third, we propose joint linkage and model growth methods for construction action modeling, which are used to generate a virtual construction scene. Finally, in response to the hierarchical scene‐generating requirements in different stages, we conduct intelligent modeling experiments for the entire design and construction process. The knowledge graph of the hierarchical semantic description mode significantly improves the flexibility and universality of the modeling method. The proposed modeling method for the entire process contributes to the rapid representation of design data, in‐depth design, visual exploration, and dynamic optimization of the construction process. This article provides a reliable digital twin modeling solution for the entire process to improve design and construction quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff发布了新的文献求助10
刚刚
lt完成签到,获得积分20
1秒前
农学小王完成签到 ,获得积分10
1秒前
d22110652发布了新的文献求助10
2秒前
wuyd90完成签到,获得积分20
2秒前
3秒前
华仔应助城市公园采纳,获得10
6秒前
观致关注了科研通微信公众号
7秒前
lin发布了新的文献求助10
8秒前
甜甜的冷霜完成签到,获得积分10
8秒前
好好完成签到,获得积分20
9秒前
SSSSscoliosis完成签到,获得积分10
11秒前
11秒前
儒雅的如松完成签到 ,获得积分10
12秒前
15秒前
16秒前
bkagyin应助无处不在采纳,获得10
17秒前
18秒前
LDDD发布了新的文献求助10
18秒前
18秒前
dabaigou完成签到,获得积分10
19秒前
jungle发布了新的文献求助20
20秒前
d22110652发布了新的文献求助10
21秒前
观致发布了新的文献求助10
24秒前
巴乔完成签到,获得积分10
24秒前
hgl发布了新的文献求助10
24秒前
科研通AI5应助阿景采纳,获得10
24秒前
LDDD完成签到,获得积分10
26秒前
27秒前
SYLH应助fubiao采纳,获得10
28秒前
dabaigou发布了新的文献求助10
31秒前
细心的雨竹完成签到,获得积分10
31秒前
33秒前
Megumi完成签到,获得积分10
33秒前
标致雁发布了新的文献求助10
34秒前
34秒前
d22110652发布了新的文献求助150
34秒前
SYLH应助jungle采纳,获得10
38秒前
寒鸦浮水给乐乐乐乐乐乐的求助进行了留言
39秒前
39秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825716
求助须知:如何正确求助?哪些是违规求助? 3367860
关于积分的说明 10448391
捐赠科研通 3087329
什么是DOI,文献DOI怎么找? 1698619
邀请新用户注册赠送积分活动 816861
科研通“疑难数据库(出版商)”最低求助积分说明 769973