亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting clinically significant prostate cancer with a deep learning approach: a multicentre retrospective study

医学 前列腺癌 前列腺切除术 前列腺 磁共振成像 活检 队列 接收机工作特性 多参数磁共振成像 放射科 核医学 回顾性队列研究 泌尿科 癌症 内科学 外科
作者
Litao Zhao,Jie Bao,Xiaomeng Qiao,Pengfei Jin,Yanting Ji,Zhenkai Li,Ji Zhang,Yueting Su,Libiao Ji,Junkang Shen,Yueyue Zhang,Lei Niu,Wanfang Xie,Chunhong Hu,Hailin Shen,Ximing Wang,Jiangang Liu,Jie Tian
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:50 (3): 727-741 被引量:34
标识
DOI:10.1007/s00259-022-06036-9
摘要

This study aimed to develop deep learning (DL) models based on multicentre biparametric magnetic resonance imaging (bpMRI) for the diagnosis of clinically significant prostate cancer (csPCa) and compare the performance of these models with that of the Prostate Imaging and Reporting and Data System (PI-RADS) assessment by expert radiologists based on multiparametric MRI (mpMRI).We included 1861 consecutive male patients who underwent radical prostatectomy or biopsy at seven hospitals with mpMRI. These patients were divided into the training (1216 patients in three hospitals) and external validation cohorts (645 patients in four hospitals). PI-RADS assessment was performed by expert radiologists. We developed DL models for the classification between benign and malignant lesions (DL-BM) and that between csPCa and non-csPCa (DL-CS). An integrated model combining PI-RADS and the DL-CS model, abbreviated as PIDL-CS, was developed. The performances of the DL models and PIDL-CS were compared with that of PI-RADS.In each external validation cohort, the area under the receiver operating characteristic curve (AUC) values of the DL-BM and DL-CS models were not significantly different from that of PI-RADS (P > 0.05), whereas the AUC of PIDL-CS was superior to that of PI-RADS (P < 0.05), except for one external validation cohort (P > 0.05). The specificity of PIDL-CS for the detection of csPCa was much higher than that of PI-RADS (P < 0.05).Our proposed DL models can be a potential non-invasive auxiliary tool for predicting csPCa. Furthermore, PIDL-CS greatly increased the specificity of csPCa detection compared with PI-RADS assessment by expert radiologists, greatly reducing unnecessary biopsies and helping radiologists achieve a precise diagnosis of csPCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
英俊的铭应助Ni采纳,获得10
26秒前
32秒前
34秒前
奈思完成签到 ,获得积分10
34秒前
38秒前
过氧化氢应助科研通管家采纳,获得10
44秒前
过氧化氢应助科研通管家采纳,获得10
44秒前
57秒前
58秒前
Hello应助ytc采纳,获得10
59秒前
wroy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
2分钟前
2386完成签到,获得积分10
2分钟前
Scarlett发布了新的文献求助30
2分钟前
彭于晏应助Ye采纳,获得10
2分钟前
Scarlett完成签到,获得积分10
2分钟前
过氧化氢应助科研通管家采纳,获得10
2分钟前
过氧化氢应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
过氧化氢应助科研通管家采纳,获得10
2分钟前
过氧化氢应助科研通管家采纳,获得10
2分钟前
金钰贝儿完成签到,获得积分10
2分钟前
乐乐乐乐乐乐应助张涛采纳,获得10
3分钟前
3分钟前
3分钟前
破晓发布了新的文献求助10
3分钟前
caca完成签到,获得积分0
3分钟前
3分钟前
李健应助LOKI采纳,获得10
3分钟前
科研通AI5应助xll采纳,获得10
4分钟前
4分钟前
mashibeo完成签到,获得积分10
4分钟前
xll发布了新的文献求助10
4分钟前
forest完成签到,获得积分10
4分钟前
FashionBoy应助吃草莓的菇采纳,获得10
4分钟前
丘比特应助Ni采纳,获得10
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047995
求助须知:如何正确求助?哪些是违规求助? 3585807
关于积分的说明 11395316
捐赠科研通 3312709
什么是DOI,文献DOI怎么找? 1822658
邀请新用户注册赠送积分活动 894629
科研通“疑难数据库(出版商)”最低求助积分说明 816439