已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

(Invited) Metallizations for Advanced Interconnects and Challenges for Future Nodes

铜互连 互连 材料科学 缩放比例 导线 光电子学 生产线后端 可靠性(半导体) 工程物理 导电体 晶体管 电子工程 电气工程 计算机科学 工程类 电介质 复合材料 物理 电信 功率(物理) 电压 量子力学 数学 几何学
作者
Marleen H. van der Veen,Jan Delabie,N. Heylen,Olalla Varela Pedreira,Nicolas Jourdan,Seongho Park,Herbert Struyf,Zsolt Tökei
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (15): 809-809 被引量:2
标识
DOI:10.1149/ma2022-0215809mtgabs
摘要

The dimensional scaling of the back-end of line (BeOL)interconnects is a significant challenge for the deposition and fill of conductive metals in narrow lines and small vias that are needed to connect the semiconductor devices. Especially at the lower and the smaller interconnect levels, the scaling of the copper (Cu) dual damascene is becoming the limiting factor due to the increase in the resistance-capacitance delay. The increase in RC delay results in a degradation of the chip performance. So, while the scaling in the logic device landscape leads to a continuous improvement of the device performance and an increased transistor density, the Cu wiring in the interconnects systems tend to perform worse when scaling down the dimensions. This paper addresses methodologies to continue the scaling of the BEOL interconnects down to small CD’s like 12nm. For this, process and materials innovation are the key to reduce the interconnect area and its resistance.[1] Examples that will be discussed include Cu hybrid metallization and the use of new conductor materials or integration methodologies like metal patterning. In being the workhorse for building multilevel interconnects, the first desired direction is to push and extend the conventional Cu dual damascene metallization to small dimensions. However, extending Cu is not only challenging from a metal fill point of view, but also from the resistance as well as reliability point of view. The ideal metal that could replace the conventional Cu should have a low electrical resistance in scaled dimensions, have a good thermal conductivity, is resistant against oxidation and possesses a high melting point.[2] This melting is a good measure for the ease of electromigration due to metal diffusion where a high melting point would allow for a reliable operation without the need for a barrier material to prevent it to diffuse. This brings Ru, Mo and W in the picture as interesting material to replace Cu in the vias, and potential later in the lines as well. Figure 1 (left) shows the tabulated via and line resistance predictions for Cu and alternative metals to Cu like Co, Ru, Mo and W (method described elsewhere [3]). The red color coding is used to indicate too high resistance values, where green indicates the desired target resistance. The resistance benefit for the use of Ru, Mo or W compared to Cu is clearly visible in the table. An efficient way to introduce a new alternative metal in the Cu interconnect metallization without being too disruptive is using a selective metal deposition for the vias landing on the exposed bottom metal (Fig.1 middle). After the vias are filled using a selective metal-on-metal deposition with a barrierless metal like Ru or W [4,5], the remainder of the structures can be filled using the conventional Cu metallization scheme. This process is called a Cu hybrid metallization scheme. Filling the vias before the Cu line metallization, improves the process window and yield for the Cu gapfill. Challenges for the selective deposition of metals in vias will be discussed. The XTEM in Figure 1 (right) shows a successful example of the metal prefill in a via hole with bottom CD of 14nm. The via is nicely filled with the metal while the top lines in the dielectric that are not connected to vias do not show any non-selective deposition. Even though the vias are becoming more and more critical in the signal routing on a system-on-chip level, the resistance penalty for the Cu lines is unacceptable at small CDs as can be seen in the table in Fig.1. But eventually, the Cu electromigration will set the limit because at 10nm CD copper lines are not expected to meet electromigration requirements anymore [6]. This is then an inflection point to also replace the lines with alternative metals like Ru, Mo or more exotic conductors like binary metals. For these metals, the challenges in the line fill, processing, and integration will be discussed which may lead to the introduction of the so-called semi-damascene module [7] instead of using the dual damascene methodology. [1] J. Clarke et al , IEEE VLSI 2014, p. 176 [2] D. Gall et al , J. Appl. Phys. 2016, 119, p.085101 [3] I. Ciofi et al , IEEE transactions on Electron Devices 2017, 64 (5), p.2306 [5] M.H. van der Veen et al , Proc. of the IITC 2021, S7-2 [4] M. van der Veen et al , Proc. of the IITC 2020, p.16 [6] K. Croes et al , IEDM 2018, p 5.3.1 [7] Zs. Tőkei et al , IEDM 2020, p 32.2.2 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的猫咪完成签到 ,获得积分10
刚刚
刚刚
邢至森发布了新的文献求助10
1秒前
3秒前
aimynora完成签到 ,获得积分10
5秒前
百里一笑发布了新的文献求助10
5秒前
7秒前
姜茶发布了新的文献求助10
7秒前
小球完成签到 ,获得积分10
9秒前
Cloud完成签到,获得积分10
9秒前
10秒前
王cc完成签到,获得积分10
11秒前
Donger完成签到 ,获得积分10
12秒前
Cloud发布了新的文献求助10
13秒前
17秒前
英俊的铭应助想听水星记采纳,获得10
19秒前
脑洞疼应助SYSUCC采纳,获得10
19秒前
21秒前
22秒前
大模型应助sxb10101采纳,获得10
23秒前
YOYORosey发布了新的文献求助10
23秒前
26秒前
ll完成签到 ,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
29秒前
qnqqq完成签到 ,获得积分10
30秒前
万能图书馆应助桃子e采纳,获得10
31秒前
27完成签到 ,获得积分10
34秒前
超人爱吃菠菜完成签到,获得积分10
36秒前
allover完成签到,获得积分10
38秒前
湫秋发布了新的文献求助10
39秒前
39秒前
靓仔我来帮你完成签到,获得积分10
40秒前
LY_Qin完成签到,获得积分10
42秒前
科研通AI6.1应助linyanling采纳,获得10
44秒前
45秒前
bylee发布了新的文献求助10
46秒前
lin关注了科研通微信公众号
46秒前
Xuech完成签到,获得积分10
46秒前
大模型应助土豪的洋葱采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763557
求助须知:如何正确求助?哪些是违规求助? 5541880
关于积分的说明 15404946
捐赠科研通 4899261
什么是DOI,文献DOI怎么找? 2635432
邀请新用户注册赠送积分活动 1583495
关于科研通互助平台的介绍 1538634