Fault-Tolerant Closed-Loop Controller Using Online Fault Detection by Neural Networks

故障检测与隔离 人工神经网络 断层(地质) 控制理论(社会学) 计算机科学 控制器(灌溉) 陷入故障 卡尔曼滤波器 容错 人工智能 控制工程 工程类 实时计算 控制(管理) 分布式计算 地震学 农学 执行机构 生物 地质学
作者
Alma Y. Alanís,Jesús Gerardo Cruz Álvarez,Oscar D. Sánchez,Herminio Hernández,Arturo Valdivia-G
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 844-844
标识
DOI:10.3390/machines12120844
摘要

This paper presents an online model-free sensor fault-tolerant control scheme capable of tolerating the most common faults affecting an induction motor. This approach involves using neural networks for fault detection to provide the controller with sufficient information to counteract adverse consequences due to sensor faults, such as degradation in performance, reliability, and even failures in the control system. The proposed approach does not consider the knowledge of the nominal model of the system or when the fault may occur. Therefore, a high-order recurrent neural network trained online by the Extended Kalman Filter is used to obtain a mathematical model of the system. The obtained model is used to synthesize a discrete-time sliding mode control. Then, the fault-detection and -isolation stage is performed by independent neural networks, which have as input the signal from the current sensor and the position sensor, respectively. In this way, the neural classifiers continuously monitor the sensors, showing the ability to know the sensor status. The combination of controller and fault detection maintains the operation of the motor during the time of the fault occurrence, whether due to sensor disconnection, degradation, or connection failure. In fact, the MLP neural network achieves an accuracy between 95% and 99% and shows an AUC of 97% to 99%, and this neural network correctly classifies true positives with acceptable performance. The Recall value is high, between 97% and 99%, and the F1 score confirms a good performance. In contrast, the CNN shows a higher accuracy, between 96% and 99% in accuracy and 98% to 99% in AUC. In addition, its Recall and F1 reflect a better balance and capacity to handle complex data, demonstrating its superiority to MLP in fault classification. Therefore, neural networks are a promising approach in areas such as fault-tolerant control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoyn发布了新的文献求助10
1秒前
2秒前
2秒前
54189415发布了新的文献求助10
3秒前
集力申完成签到,获得积分10
4秒前
半山完成签到,获得积分10
4秒前
世间安得双全法完成签到,获得积分0
5秒前
tRNA完成签到,获得积分10
5秒前
石头完成签到,获得积分10
5秒前
温乘云完成签到,获得积分10
5秒前
机灵柚子应助神秘玩家采纳,获得10
8秒前
故意的松思应助54189415采纳,获得20
8秒前
莎莎士比亚完成签到,获得积分10
9秒前
9秒前
汉堡包应助缥缈丹云采纳,获得10
10秒前
11秒前
xxxinging完成签到,获得积分10
16秒前
妮妮发布了新的文献求助100
16秒前
17秒前
搞怪人雄完成签到,获得积分10
19秒前
19秒前
luoyn完成签到,获得积分20
20秒前
英俊的铭应助务实青筠采纳,获得10
21秒前
深情安青应助李白的白123采纳,获得10
21秒前
Ambition完成签到 ,获得积分10
21秒前
zho发布了新的文献求助10
21秒前
王俊完成签到,获得积分10
22秒前
LC完成签到 ,获得积分10
24秒前
25秒前
脾气暴躁的小兔完成签到,获得积分10
27秒前
yuminger发布了新的文献求助10
27秒前
上彐下火完成签到 ,获得积分10
29秒前
30秒前
ScholarZmm完成签到,获得积分10
30秒前
32秒前
大模型应助马大王采纳,获得30
33秒前
旺仔小秃头完成签到,获得积分10
33秒前
小奕完成签到,获得积分0
34秒前
传奇3应助零零采纳,获得20
34秒前
可爱的香岚完成签到 ,获得积分10
34秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770