A Novel FECAM-iTransformer Algorithm for Assisting INS/GNSS Navigation System during GNSS Outages

全球导航卫星系统应用 计算机科学 全球导航卫星系统增强 实时计算 全球定位系统 电信
作者
Xinghong Kuang,Biyun Yan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (19): 8753-8753
标识
DOI:10.3390/app14198753
摘要

In the field of navigation and positioning, the inertial navigation system (INS)/global navigation satellite system (GNSS) integrated navigation system is known for providing stable and high-precision navigation services for vehicles. However, in extreme scenarios where GNSS navigation data are completely interrupted, the positioning accuracy of these integrated systems declines sharply. While there has been considerable research into using neural networks to replace the GNSS signal output during such interruptions, these approaches often lack targeted modeling of sensor information, resulting in poor navigation stability. In this study, we propose an integrated navigation system assisted by a novel neural network: an inverted-Transformer (iTransformer) and the application of a frequency-enhanced channel attention mechanism (FECAM) to enhance its performance, called an INS/FECAM-iTransformer integrated navigation system. The key advantage of this system lies in its ability to simultaneously extract features from both the time and frequency domains and capture the variable correlations among multi-channel measurements, thereby enhancing the modeling capabilities for sensor data. In the experimental part, a public dataset and a private dataset are used for testing. The best experimental results show that compared to a pure INS inertial navigation system, the position error of the INS/FECAM-iTransformer integrated navigation system reduces by up to 99.9%. Compared to the INS/LSTM (long short-term memory) and INS/GRU (gated recurrent unit) integrated navigation systems, the position error of the proposed method decreases by up to 82.4% and 78.2%, respectively. The proposed approach offers significantly higher navigation accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助平常雨泽采纳,获得10
1秒前
华仔应助ccccc采纳,获得10
1秒前
甜甜冷菱完成签到,获得积分10
2秒前
热情迎彤完成签到,获得积分10
2秒前
lseyj完成签到,获得积分10
3秒前
SYLH应助shuangcheng采纳,获得10
3秒前
奶冻发布了新的文献求助10
3秒前
Truman发布了新的文献求助10
4秒前
科研助手6应助66m37采纳,获得20
4秒前
沈清酌发布了新的文献求助10
5秒前
5秒前
英俊的铭应助chase采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
虚幻青曼完成签到,获得积分10
8秒前
Airy完成签到,获得积分10
8秒前
yyyyyy发布了新的文献求助30
9秒前
12356完成签到 ,获得积分10
9秒前
隅陬一角关注了科研通微信公众号
10秒前
10秒前
孙友浩发布了新的文献求助10
10秒前
思源应助超帅的从菡采纳,获得10
11秒前
zzzzz发布了新的文献求助10
11秒前
12秒前
可她不是绘梨衣完成签到,获得积分10
12秒前
kkpy完成签到,获得积分20
13秒前
WOLF发布了新的文献求助10
13秒前
橙子发布了新的文献求助10
13秒前
14秒前
yyy完成签到 ,获得积分10
14秒前
14秒前
chase完成签到,获得积分10
14秒前
cheyy发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814715
求助须知:如何正确求助?哪些是违规求助? 3358800
关于积分的说明 10397538
捐赠科研通 3076183
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813213
科研通“疑难数据库(出版商)”最低求助积分说明 767548