Using hyperspectral imaging technology and machine learning algorithms for assessing internal quality parameters of apple fruits

高光谱成像 偏最小二乘回归 人工智能 人工神经网络 数学 线性回归 回归 决策树 计算机科学 模式识别(心理学) 统计
作者
Necati Çetin,Kevser Karaman,Erhan Kavuncuoğlu,Bekir Yıldırım,Ahmad Jahanbakhshi
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:230: 104650-104650 被引量:54
标识
DOI:10.1016/j.chemolab.2022.104650
摘要

The important internal quality parameters of apples are firmness and soluble solids content (SSC); features that affect consumers' preferences and the marketing of apples. Hyperspectral imaging systems are novel and non-destructive methods that have various applications in the food industries. The regression methods offer many advantages due to the learning capability, non-destructive measurements, reduced assumptions, process compliance, and tolerance of missing data in agricultural commodities. In the present study, hyperspectral images of Pink Lady apples at different harvest stages (three periods) were analyzed to predict some internal characteristics (firmness and SSC). The hyperspectral camera was used to acquire reflectance data in 300 spectral bands in the range of 386 and 1028 nm in a total of 100 samples for each harvest period. In addition, prediction performance of artificial neural network (ANN), k-nearest neighbors (KNN), decision tree (DT), partial least squares regression (PLSR) and multiple linear regression (MLR) were evaluated. Determination coefficients (R2) were respectively determined as 0.910 and 0.684 for ANN, 0.881 and 0.679 for DT, 0.781 and 0.684 for KNN, 0.666 and 0.762 for MLR and 0.819 and 0.661 for PLSR in the prediction of firmness and SSC. Besides, better firmness prediction was achieved by using spectral bands of 511, 505, 704, and 689 nm. The present study demonstrated the potential use of hyperspectral imaging with ANN and DT methods was more effective for firmness, while DT and MLR were more effective for SSC and the methods were proved to be quite feasible for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热灰狼完成签到,获得积分20
刚刚
薪吉发布了新的文献求助10
刚刚
花椒鱼发布了新的文献求助10
1秒前
霖夏发布了新的文献求助10
1秒前
沉默采波完成签到 ,获得积分10
1秒前
飞翔的昆仑山完成签到,获得积分10
3秒前
炙热灰狼发布了新的文献求助10
3秒前
3秒前
李健应助ww采纳,获得10
3秒前
4秒前
重七给重七的求助进行了留言
4秒前
生动的战斗机完成签到,获得积分10
4秒前
5秒前
健忘的念蕾完成签到,获得积分10
5秒前
阿嘉完成签到 ,获得积分10
6秒前
6秒前
黄徐完成签到,获得积分20
6秒前
7秒前
ID8发布了新的文献求助10
8秒前
张凤发布了新的文献求助10
8秒前
yinyuwei发布了新的文献求助10
8秒前
NexusExplorer应助花椒鱼采纳,获得10
8秒前
海不扬波发布了新的文献求助30
10秒前
10秒前
黄徐发布了新的文献求助10
10秒前
1111111111111完成签到,获得积分10
11秒前
11秒前
12秒前
现代雁桃发布了新的文献求助10
13秒前
耳东陈发布了新的文献求助10
14秒前
jenningseastera应助小鹿采纳,获得10
14秒前
哎呀妈呀完成签到,获得积分10
14秒前
15秒前
16秒前
Owen应助SPRETEND采纳,获得10
17秒前
张凤发布了新的文献求助10
17秒前
顺其自然完成签到 ,获得积分10
18秒前
19秒前
重七发布了新的文献求助30
19秒前
Dr大壮发布了新的文献求助30
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791756
求助须知:如何正确求助?哪些是违规求助? 3336090
关于积分的说明 10278727
捐赠科研通 3052729
什么是DOI,文献DOI怎么找? 1675280
邀请新用户注册赠送积分活动 803318
科研通“疑难数据库(出版商)”最低求助积分说明 761165