The critical aggregation concentration of peptide surfactants is predictable from dynamic hydrophobic property

化学 财产(哲学) 疏水效应 生物化学 认识论 哲学
作者
Fengchun Tian,Jingkun Wu,Niu Huang,Tailin Guo,ChengTing Mao
出处
期刊:Sar and Qsar in Environmental Research [Taylor & Francis]
卷期号:24 (2): 89-101 被引量:6
标识
DOI:10.1080/1062936x.2012.742134
摘要

Peptide surfactants are a kind of newly emerged functional materials, which have a variety of applications such as building nanoarchitecture, stabilizing membrane proteins and controlling drug release. In the present study, we report the modelling and prediction of critical aggregation concentration (CAC), an important parameter that characterizes the self-assembling behaviour of peptide surfactants through the use of statistical modelling and quantitative structure–property relationship (QSPR) approaches. In order to accurately describe the structural and physicochemical properties of the highly flexible peptide molecules, a new method called molecular dynamics-based hydrophobic cross-field (MD-HCF) is proposed to capture both the hydrophobic profile and dynamic feature of 32 surface-activity, structure-known peptides. A number of statistical models are then developed using partial least squares (PLS) regression with or without improvement by genetic algorithm (GA). We demonstrate that MD-HCF performs much better than the widely used CODESSA method in both its predictability and interpretability. We also highlight the importance of dynamic hydrophobic property in accurate prediction and reasonable explanation of peptide self-assembling behaviour in solution, albeit which is exhaustive to compute compared with those derived directly from peptide static structure. To the best of our knowledge, this study is the first to computationally model and predict the self-assembling behaviour of peptide surfactants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
这瓜不卖发布了新的文献求助10
刚刚
刚刚
dasfdufos发布了新的文献求助10
1秒前
zhangjianan发布了新的文献求助10
1秒前
2秒前
陈123发布了新的文献求助10
6秒前
天天快乐应助dasfdufos采纳,获得10
7秒前
韩电饭煲健康完成签到,获得积分20
8秒前
绿色植物发布了新的文献求助10
9秒前
小二郎应助欣慰的书本采纳,获得30
9秒前
9秒前
10秒前
科研通AI5应助Azhou采纳,获得20
11秒前
Revovler完成签到,获得积分10
11秒前
12秒前
无花果应助大侦探皮卡丘采纳,获得10
14秒前
动漫大师发布了新的文献求助10
15秒前
17秒前
Patty应助科研力力采纳,获得10
17秒前
17秒前
wuqi完成签到,获得积分10
18秒前
18秒前
小草三心发布了新的文献求助10
19秒前
19秒前
LEMON完成签到,获得积分10
21秒前
hcmsaobang2001完成签到,获得积分10
21秒前
俏皮芹发布了新的文献求助10
22秒前
西米发布了新的文献求助10
22秒前
23秒前
23秒前
小陆完成签到 ,获得积分10
24秒前
哇呀呀发布了新的文献求助10
25秒前
yanyan发布了新的文献求助10
25秒前
怕孤独的忆南完成签到,获得积分10
26秒前
十二月完成签到,获得积分10
27秒前
瑞思摆完成签到,获得积分10
27秒前
雨下听风发布了新的文献求助10
28秒前
mayumei完成签到,获得积分10
28秒前
冷傲千秋发布了新的文献求助10
28秒前
FashionBoy应助lala采纳,获得10
29秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148