Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation

尸体痉挛 运动学 生物力学 膝关节 前交叉韧带 韧带 有限元法 内侧副韧带 前交叉韧带损伤 结构工程 机械 数学 解剖 物理 医学 工程类 外科 经典力学
作者
Ali Kiapour,A. M. Kiapour,V. Kaul,Carmen E. Quatman,S. C. Wordeman,Timothy E. Hewett,Constantine K. Demetropoulos,Vijay K. Goel
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:136 (1) 被引量:100
标识
DOI:10.1115/1.4025692
摘要

Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助达到采纳,获得10
1秒前
2秒前
Xxxxzzz发布了新的文献求助10
2秒前
嫁个养熊猫的完成签到 ,获得积分10
2秒前
都兰完成签到,获得积分10
3秒前
3秒前
经百招完成签到,获得积分10
3秒前
3秒前
kkkk发布了新的文献求助10
6秒前
7秒前
研友_8y2G0L发布了新的文献求助10
8秒前
WJ发布了新的文献求助10
8秒前
9秒前
SYLH应助贰什柒采纳,获得10
9秒前
10秒前
12秒前
雪天的阳发布了新的文献求助10
13秒前
shisujuan发布了新的文献求助10
13秒前
慕青应助付艳采纳,获得10
15秒前
orixero应助WJ采纳,获得10
18秒前
19秒前
20秒前
biopig应助贰什柒采纳,获得10
22秒前
23秒前
顺心凡之完成签到,获得积分10
23秒前
思源应助wang采纳,获得10
23秒前
火星上的天蓝完成签到,获得积分20
23秒前
爆米花应助极品小亮采纳,获得10
25秒前
路路有为完成签到 ,获得积分10
26秒前
冯岗发布了新的文献求助10
26秒前
spoon1026发布了新的文献求助10
27秒前
27秒前
悠然小灏发布了新的文献求助10
28秒前
都兰发布了新的文献求助10
29秒前
852应助给我个二硫碘化钾采纳,获得10
29秒前
乐观猕猴桃完成签到 ,获得积分10
29秒前
30秒前
30秒前
orixero应助轻松无剑采纳,获得10
31秒前
务实思烟完成签到,获得积分20
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349