亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Domain Adaptation by Causal Learning for Biometric Signal-based HCI

计算机科学 生物识别 人工智能 任务(项目管理) 语音识别 手势 会话(web分析) 机器学习 适应(眼睛) 模式识别(心理学) 多任务学习 心理学 万维网 经济 神经科学 管理
作者
Qingfeng Dai,Yongkang Wong,Guofei Sun,Yanwei Wang,Zhou Zhou,Mohan Kankanhalli,Xiangdong Li,Weidong Geng
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (2): 1-18 被引量:2
标识
DOI:10.1145/3583885
摘要

Biometric signal based human-computer interface (HCI) has attracted increasing attention due to its wide application in healthcare, entertainment, neurocomputing, and so on. In recent years, deep learning-based approaches have made great progress on biometric signal processing. However, the state-of-the-art (SOTA) approaches still suffer from model degradation across subjects or sessions. In this work, we propose a novel unsupervised domain adaptation approach for biometric signal-based HCI via causal representation learning. Specifically, three kinds of interventions on biometric signals (i.e., subjects, sessions, and trials) can be selected to generalize deep models across the selected intervention. In the proposed approach, a generative model is trained for producing intervened features that are subsequently used for learning transferable and causal relations with three modes. Experiments on the EEG-based emotion recognition task and sEMG-based gesture recognition task are conducted to confirm the superiority of our approach. An improvement of +0.21% on the task of inter-subject EEG-based emotion recognition is achieved using our approach. Besides, on the task of inter-session sEMG-based gesture recognition, our approach achieves improvements of +1.47%, +3.36%, +1.71%, and +1.01% on sEMG datasets including CSL-HDEMG, CapgMyo DB-b, 3DC, and Ninapro DB6, respectively. The proposed approach also works on the task of inter-trial sEMG-based gesture recognition and an average improvement of +0.66% on Ninapro databases is achieved. These experimental results show the superiority of the proposed approach compared with the SOTA unsupervised domain adaptation methods on HCIs based on biometric signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
锦诗完成签到,获得积分10
17秒前
h0jian09完成签到,获得积分10
19秒前
义气的钥匙完成签到,获得积分10
27秒前
Lin完成签到,获得积分20
30秒前
小杭76应助Lin采纳,获得10
36秒前
善学以致用应助Lin采纳,获得10
36秒前
btsforever完成签到 ,获得积分10
40秒前
Lucas应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
叶箴完成签到,获得积分20
1分钟前
董羽佳完成签到,获得积分10
1分钟前
现代雁桃完成签到,获得积分10
1分钟前
1分钟前
小林同学0219完成签到 ,获得积分10
1分钟前
ding应助Marciu33采纳,获得10
1分钟前
王了了完成签到 ,获得积分10
1分钟前
1分钟前
小李发布了新的文献求助10
1分钟前
YM发布了新的文献求助10
1分钟前
mmmmmmgm完成签到 ,获得积分10
1分钟前
wayne完成签到 ,获得积分10
1分钟前
香蕉觅云应助海贵采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ChenxiPan发布了新的文献求助10
2分钟前
迷你的靖雁完成签到,获得积分10
2分钟前
汉堡包应助tiger采纳,获得10
2分钟前
YM完成签到,获得积分20
2分钟前
本本完成签到 ,获得积分10
2分钟前
天123完成签到 ,获得积分10
2分钟前
陈晓彤应助YM采纳,获得10
2分钟前
lulu完成签到 ,获得积分10
2分钟前
2分钟前
Edward发布了新的文献求助10
2分钟前
2分钟前
justinshi发布了新的文献求助10
2分钟前
JamesPei应助Jessie采纳,获得10
2分钟前
高分求助中
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
Bond and Bond Option Pricing based on the Current Term Structure 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4786465
求助须知:如何正确求助?哪些是违规求助? 4112725
关于积分的说明 12723319
捐赠科研通 3838034
什么是DOI,文献DOI怎么找? 2116022
邀请新用户注册赠送积分活动 1138881
关于科研通互助平台的介绍 1025480