Deep Reinforcement Learning for Dynamic Algorithm Selection: A Proof-of-Principle Study on Differential Evolution

强化学习 选择(遗传算法) 计算机科学 差速器(机械装置) 算法 人工智能 差异进化 物理 热力学
作者
Hongshu Guo,Yining Ma,Zeyuan Ma,Jiacheng Chen,Xinglin Zhang,Zhiguang Cao,Jun Zhang,Yue‐Jiao Gong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 4247-4259 被引量:3
标识
DOI:10.1109/tsmc.2024.3374889
摘要

Evolutionary algorithms, such as differential evolution, excel in solving real-parameter optimization challenges. However, the effectiveness of a single algorithm varies across different problem instances, necessitating considerable efforts in algorithm selection or configuration. This article aims to address the limitation by leveraging the complementary strengths of a group of algorithms and dynamically scheduling them throughout the optimization progress for specific problems. We propose a deep reinforcement learning-based dynamic algorithm selection framework to accomplish this task. Our approach models the dynamic algorithm selection a Markov decision process, training an agent in a policy gradient manner to select the most suitable algorithm according to the features observed during the optimization process. To empower the agent with the necessary information, our framework incorporates a thoughtful design of landscape and algorithmic features. Meanwhile, we employ a sophisticated deep neural network model to infer the optimal action, ensuring informed algorithm selections. Additionally, an algorithm context restoration mechanism is embedded to facilitate smooth switching among different algorithms. These mechanisms together enable our framework to seamlessly select and switch algorithms in a dynamic online fashion. Notably, the proposed framework is simple and generic, offering potential improvements across a broad spectrum of evolutionary algorithms. As a proof-of-principle study, we apply this framework to a group of differential evolution algorithms. The experimental results showcase the remarkable effectiveness of the proposed framework, not only enhancingthe overall optimization performance but also demonstrating favorable generalization ability across different problem classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的又莲完成签到 ,获得积分10
刚刚
刚刚
传奇3应助大侦探皮卡丘采纳,获得10
2秒前
2秒前
Hello应助bocai采纳,获得10
3秒前
灿烂千阳发布了新的文献求助50
6秒前
zho应助英俊白莲采纳,获得10
6秒前
顾矜应助我cr采纳,获得10
7秒前
英姑应助姚姚采纳,获得10
8秒前
王希澳完成签到,获得积分10
9秒前
10秒前
Tang完成签到 ,获得积分10
10秒前
姚姚完成签到,获得积分10
13秒前
2799完成签到,获得积分10
14秒前
shenqi完成签到,获得积分20
17秒前
18秒前
无花果应助摩登灰太狼采纳,获得10
18秒前
小白完成签到,获得积分10
19秒前
21秒前
beyonder发布了新的文献求助10
22秒前
开朗满天发布了新的文献求助10
22秒前
甜甜谷雪发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
科研助手6应助灿烂千阳采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得30
28秒前
科研通AI5应助科研通管家采纳,获得30
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
28秒前
情怀应助开朗满天采纳,获得10
28秒前
烟花应助科研通管家采纳,获得20
28秒前
28秒前
小粽子应助科研通管家采纳,获得10
28秒前
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844596
求助须知:如何正确求助?哪些是违规求助? 3386985
关于积分的说明 10547099
捐赠科研通 3107526
什么是DOI,文献DOI怎么找? 1711853
邀请新用户注册赠送积分活动 824208
科研通“疑难数据库(出版商)”最低求助积分说明 774638