Deep Reinforcement Learning for Dynamic Algorithm Selection: A Proof-of-Principle Study on Differential Evolution

强化学习 选择(遗传算法) 计算机科学 差速器(机械装置) 算法 人工智能 差异进化 物理 热力学
作者
Hongshu Guo,Yining Ma,Zeyuan Ma,Jiacheng Chen,Xinglin Zhang,Zhiguang Cao,Jun Zhang,Yue‐Jiao Gong
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 4247-4259 被引量:18
标识
DOI:10.1109/tsmc.2024.3374889
摘要

Evolutionary algorithms, such as differential evolution, excel in solving real-parameter optimization challenges. However, the effectiveness of a single algorithm varies across different problem instances, necessitating considerable efforts in algorithm selection or configuration. This article aims to address the limitation by leveraging the complementary strengths of a group of algorithms and dynamically scheduling them throughout the optimization progress for specific problems. We propose a deep reinforcement learning-based dynamic algorithm selection framework to accomplish this task. Our approach models the dynamic algorithm selection a Markov decision process, training an agent in a policy gradient manner to select the most suitable algorithm according to the features observed during the optimization process. To empower the agent with the necessary information, our framework incorporates a thoughtful design of landscape and algorithmic features. Meanwhile, we employ a sophisticated deep neural network model to infer the optimal action, ensuring informed algorithm selections. Additionally, an algorithm context restoration mechanism is embedded to facilitate smooth switching among different algorithms. These mechanisms together enable our framework to seamlessly select and switch algorithms in a dynamic online fashion. Notably, the proposed framework is simple and generic, offering potential improvements across a broad spectrum of evolutionary algorithms. As a proof-of-principle study, we apply this framework to a group of differential evolution algorithms. The experimental results showcase the remarkable effectiveness of the proposed framework, not only enhancingthe overall optimization performance but also demonstrating favorable generalization ability across different problem classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dara997发布了新的文献求助10
刚刚
1秒前
玛奇朵完成签到,获得积分10
1秒前
倒立拉shi发布了新的文献求助10
2秒前
lyk2815完成签到,获得积分10
2秒前
洛奇亚完成签到,获得积分10
3秒前
无敌霸王花应助leo7采纳,获得20
3秒前
阿良完成签到,获得积分10
3秒前
3秒前
Jasper应助小巧的大米采纳,获得10
4秒前
打打应助purist采纳,获得10
4秒前
完美世界应助玛奇朵采纳,获得10
5秒前
浮游应助君无双采纳,获得10
7秒前
Ken921319005发布了新的文献求助10
8秒前
擦撒擦擦完成签到,获得积分10
9秒前
燕燕发布了新的文献求助10
9秒前
Lacey完成签到,获得积分10
9秒前
小丸子发布了新的文献求助10
9秒前
LION完成签到,获得积分10
10秒前
10秒前
leo7完成签到,获得积分10
12秒前
Ava应助马金金采纳,获得10
13秒前
田様应助27采纳,获得10
13秒前
菲菲完成签到 ,获得积分10
13秒前
Hao应助鳗鱼鸽子采纳,获得20
16秒前
77完成签到,获得积分10
16秒前
16秒前
独特鸽子完成签到 ,获得积分20
16秒前
天天快乐应助Ken921319005采纳,获得10
17秒前
17秒前
zyw发布了新的文献求助10
18秒前
hao253发布了新的文献求助10
19秒前
21秒前
Lucas应助和谐的敏采纳,获得10
22秒前
布图格其完成签到,获得积分10
23秒前
文艺谷蓝完成签到,获得积分10
24秒前
25秒前
北冥有鱼完成签到,获得积分10
27秒前
cfyoung完成签到,获得积分10
27秒前
华仔应助小尚采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397228
求助须知:如何正确求助?哪些是违规求助? 4517421
关于积分的说明 14063983
捐赠科研通 4429352
什么是DOI,文献DOI怎么找? 2432332
邀请新用户注册赠送积分活动 1424830
关于科研通互助平台的介绍 1403865