亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DepMGNN: Matrixial Graph Neural Network for Video-based Automatic Depression Assessment

萧条(经济学) 人工神经网络 计算机科学 人工智能 图形 心理学 理论计算机科学 宏观经济学 经济
作者
Zijian Wu,Leijing Zhou,Shuanglin Li,Changzeng Fu,Jun Lu,Jing Han,Yi Zhang,Zhuang Zhao,Siyang Song
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (2): 1610-1619
标识
DOI:10.1609/aaai.v39i2.32153
摘要

Depression can be reflected by long-term human spatio-temporal facial behaviours. While human face videos recorded in real-world usually have long and variable lengths, existing video-based depression assessment approaches frequently re-sample/down-sample such videos to short and equal-length videos, or split each video into several equal-length segments, where segment-level spatio-temporal facial behaviours are suppressed as a vector-style representations for RNN-based long-term (video-level) modelling. Both strategies lead to crucial information loss and distortion. In this paper, we propose a novel graph-style data structure called Matrixial Graph and an effective Matrixial Graph Neural Network (MGNN) for face video-based depression assessment, which can directly and end-to-end model long-term depression-specific spatio-temporal facial cues from variable-length videos without resampling/splitting videos or suppressing video segments to vectors. Importantly, the nodes in our matrixial graph are capable of including matrices of different shapes, and thus nodes of a matrix graph can directly represent all frame-level 2D facial feature maps (or images themselves) of an entire video regardless of its length. Then, our MGNN is the first GNN that can jointly process matrixial graphs containing varying numbers of nodes, which further learns matrix-style edge features, thereby facilitating to explicit model video-level multi-scale spatio-temporal facial behaviours among matrixial graph nodes for depression assessment. Experiments show that the explicit spatio-temporal modeling on 2D facial feature maps, facilitated by our matrixial graph/MGNN, provided significant benefits, leading our approach to achieve new state-of-the-art performances on AVEC2013 and AVEC2014 datasets with large advantages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
7秒前
xiao完成签到 ,获得积分10
9秒前
13秒前
19秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
oleskarabach发布了新的文献求助10
33秒前
Romina应助oleskarabach采纳,获得10
1分钟前
1分钟前
慕青应助海藏进星辰采纳,获得10
1分钟前
娇气的南琴完成签到,获得积分10
1分钟前
海藏进星辰完成签到,获得积分10
1分钟前
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
波波完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
我是老大应助xiongdi521采纳,获得10
2分钟前
歪歪发布了新的文献求助10
2分钟前
zch19970203发布了新的文献求助10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
xiongdi521发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xiongdi521完成签到,获得积分10
2分钟前
2分钟前
大个应助高大的蜡烛采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316468
求助须知:如何正确求助?哪些是违规求助? 3834956
关于积分的说明 11994817
捐赠科研通 3475225
什么是DOI,文献DOI怎么找? 1906128
邀请新用户注册赠送积分活动 952303
科研通“疑难数据库(出版商)”最低求助积分说明 853804