Machine-Learning Framework to Predict the Performance of Lipid Nanoparticles for Nucleic Acid Delivery

核酸 纳米颗粒 计算机科学 化学 纳米技术 生物化学 材料科学
作者
Gaurav Kumar,Arezoo M. Ardekani
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:8 (5): 3717-3727 被引量:11
标识
DOI:10.1021/acsabm.4c01716
摘要

Lipid nanoparticles (LNPs) are highly effective carriers for gene therapies, including mRNA and siRNA delivery, due to their ability to transport nucleic acids across biological membranes, low cytotoxicity, improved pharmacokinetics, and scalability. A typical approach to formulate LNPs is to establish a quantitative structure-activity relationship (QSAR) between their compositions and in vitro/in vivo activities, which allows for the prediction of activity based on molecular structure. However, developing QSAR for LNPs can be challenging due to the complexity of multicomponent formulations, interactions with biological membranes, stability in physiological environments, and diverse physicochemical properties. To address these challenges, we developed a machine-learning (ML) framework to predict the activity and cell viability of LNPs for nucleic acid delivery. We curated data from 6454 LNP formulations reported across 21 independent studies and implemented 11 different molecular featurization techniques, ranging from descriptors and fingerprints to graph-based representations, alongside six ML algorithms for binary and multiclass classification. Using scaffold-based 5-fold cross-validation, our models achieved classification accuracies exceeding 90% for both activity and cell viability prediction tasks. Among all model-feature combinations, descriptor-based features combined with ensemble models such as balanced random forest and extra trees yielded the highest performance. Through SHAP-based feature attribution and interaction analysis, we identified key physicochemical properties and compositional features driving the LNP performance, highlighting the importance of synergistic effects among multiple molecular features. Furthermore, we developed a transfer-learning strategy to bridge in vitro-to-in vivo prediction gaps by incorporating base model predictions along with additional biological attributes, such as the particle size, polydispersity index, and ζ potential. Despite the smaller size and inherent class imbalance of the in vivo data set, the transfer-learning models demonstrated a promising predictive performance, with accuracies exceeding 82%. Our findings underscore the potential of interpretable ML frameworks to guide rational LNP design and provide a scalable approach to QSAR modeling in complex nanomedicine systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的凌翠完成签到 ,获得积分10
1秒前
科研通AI2S应助炙热尔烟采纳,获得10
2秒前
ben完成签到,获得积分10
2秒前
狂野雨梅完成签到,获得积分20
2秒前
拾光完成签到,获得积分10
2秒前
3秒前
Azheng完成签到 ,获得积分10
3秒前
3秒前
安昼发布了新的文献求助10
3秒前
3秒前
小徐完成签到,获得积分10
4秒前
jokerhoney发布了新的文献求助10
4秒前
Silvia完成签到,获得积分10
4秒前
5秒前
淡淡向卉发布了新的文献求助40
5秒前
爆米花应助Doris采纳,获得30
6秒前
6秒前
小猫刘壮涛完成签到,获得积分10
7秒前
7秒前
阳光的夏槐完成签到,获得积分10
7秒前
yj发布了新的文献求助10
8秒前
史玉屏完成签到,获得积分10
8秒前
研友_O8W6rZ完成签到,获得积分10
8秒前
小于发布了新的文献求助10
9秒前
小鱼发布了新的文献求助10
9秒前
9秒前
So完成签到 ,获得积分10
9秒前
健忘飞风发布了新的文献求助10
9秒前
10秒前
桃源theshy发布了新的文献求助10
10秒前
11秒前
小胡同学完成签到,获得积分10
11秒前
学酥垃圾完成签到,获得积分10
11秒前
Jasper应助小牛马采纳,获得10
11秒前
11秒前
12秒前
李健应助搞怪白秋采纳,获得10
12秒前
12秒前
123发布了新的文献求助10
12秒前
我是老大应助小于采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605