Machine-Learning Framework to Predict the Performance of Lipid Nanoparticles for Nucleic Acid Delivery

核酸 纳米颗粒 计算机科学 化学 纳米技术 生物化学 材料科学
作者
Gaurav Kumar,Arezoo M. Ardekani
出处
期刊:ACS applied bio materials [American Chemical Society]
标识
DOI:10.1021/acsabm.4c01716
摘要

Lipid nanoparticles (LNPs) are highly effective carriers for gene therapies, including mRNA and siRNA delivery, due to their ability to transport nucleic acids across biological membranes, low cytotoxicity, improved pharmacokinetics, and scalability. A typical approach to formulate LNPs is to establish a quantitative structure-activity relationship (QSAR) between their compositions and in vitro/in vivo activities, which allows for the prediction of activity based on molecular structure. However, developing QSAR for LNPs can be challenging due to the complexity of multicomponent formulations, interactions with biological membranes, stability in physiological environments, and diverse physicochemical properties. To address these challenges, we developed a machine-learning (ML) framework to predict the activity and cell viability of LNPs for nucleic acid delivery. We curated data from 6454 LNP formulations reported across 21 independent studies and implemented 11 different molecular featurization techniques, ranging from descriptors and fingerprints to graph-based representations, alongside six ML algorithms for binary and multiclass classification. Using scaffold-based 5-fold cross-validation, our models achieved classification accuracies exceeding 90% for both activity and cell viability prediction tasks. Among all model-feature combinations, descriptor-based features combined with ensemble models such as balanced random forest and extra trees yielded the highest performance. Through SHAP-based feature attribution and interaction analysis, we identified key physicochemical properties and compositional features driving the LNP performance, highlighting the importance of synergistic effects among multiple molecular features. Furthermore, we developed a transfer-learning strategy to bridge in vitro-to-in vivo prediction gaps by incorporating base model predictions along with additional biological attributes, such as the particle size, polydispersity index, and ζ potential. Despite the smaller size and inherent class imbalance of the in vivo data set, the transfer-learning models demonstrated a promising predictive performance, with accuracies exceeding 82%. Our findings underscore the potential of interpretable ML frameworks to guide rational LNP design and provide a scalable approach to QSAR modeling in complex nanomedicine systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二世小卒完成签到 ,获得积分10
4秒前
开心完成签到 ,获得积分10
6秒前
OIIII完成签到,获得积分10
8秒前
chenzao完成签到 ,获得积分10
9秒前
zp完成签到,获得积分10
9秒前
cxlhzq完成签到,获得积分10
12秒前
千寒完成签到,获得积分10
14秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
17秒前
Eins完成签到 ,获得积分10
17秒前
xiao_J发布了新的文献求助30
26秒前
tzjz_zrz完成签到,获得积分10
28秒前
沉沉完成签到 ,获得积分0
32秒前
xiao完成签到 ,获得积分10
32秒前
火星上的雨柏完成签到,获得积分10
33秒前
雷小牛完成签到 ,获得积分10
34秒前
Spice完成签到 ,获得积分10
37秒前
小正完成签到,获得积分10
39秒前
时舒完成签到 ,获得积分10
39秒前
杨一完成签到 ,获得积分10
41秒前
魔幻的访云完成签到 ,获得积分10
41秒前
Ha完成签到,获得积分10
42秒前
zarahn完成签到,获得积分10
42秒前
念冬寒完成签到,获得积分10
47秒前
科研通AI5应助nian采纳,获得10
48秒前
哈哈呀完成签到 ,获得积分10
53秒前
abtitw完成签到,获得积分10
54秒前
ZHANG_Kun完成签到 ,获得积分10
54秒前
55秒前
文艺水风完成签到 ,获得积分10
56秒前
南北完成签到,获得积分10
1分钟前
nian发布了新的文献求助10
1分钟前
1分钟前
菠萝完成签到 ,获得积分10
1分钟前
1分钟前
zzw完成签到,获得积分10
1分钟前
laihama完成签到,获得积分10
1分钟前
专一的白萱完成签到 ,获得积分10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
一只完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779296
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220097
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503