YOLOv9-QX: A Feature Fusion and Enhancement-Based Algorithm for Underwater Object Detection

水下 特征(语言学) 融合 对象(语法) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 算法 目标检测 地质学 语言学 海洋学 哲学
作者
Yuxin Wang,Shuo Liu,Qiang Cen
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add032
摘要

Abstract To address the issues of target blurriness, complex underwater backgrounds, target occlusion, and low detection accuracy for small targets in underwater object detection, this paper proposes an improved YOLOv9-QX object detection model. First,to tackle the issue of target blurriness,a Feature mixed convolution module(FMC) is introduced, which integrates global features and enhances the global perceptual capability. Second, to address the challenges posed by complex underwater backgrounds and target occlusion, a Multiscale fusion module (MSF) is proposed. This module is strategically positioned at the interface between the backbone network and the feature extraction network in YOLOv9, facilitating the effective fusion of features from both networks. Finally, to improve the detection accuracy of small targets, a feature enhanced aggregation module(FEA) is proposed. The FEA employs upsampling and feature fusion techniques to refine image details, enhancing the distinctiveness of small target features and improving their identifiability. The experimental results on the DUO dataset demonstrate that the proposed algorithm achieves a detection accuracy of 88.08\%, representing a 1.58\% improvement over the baseline model. Additionally, the detection speed reaches 163.3 frames per second (FPS), achieving an optimal balance between detection accuracy and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助愉快的夏旋采纳,获得10
刚刚
LXR完成签到,获得积分20
1秒前
1秒前
1秒前
大蒜味酸奶钊完成签到 ,获得积分10
1秒前
嘎嘎发布了新的文献求助10
1秒前
1秒前
2秒前
rh完成签到,获得积分10
2秒前
田様应助林林林林采纳,获得10
3秒前
3秒前
赴约发布了新的文献求助10
4秒前
4秒前
4秒前
陈云完成签到,获得积分10
4秒前
科研通AI5应助qian采纳,获得10
4秒前
4秒前
ntrip完成签到,获得积分10
4秒前
wangklvin发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
隐形曼青应助wmmm采纳,获得10
6秒前
丰富的大地完成签到,获得积分10
6秒前
mahuahua完成签到,获得积分10
6秒前
6秒前
chiahaokuo发布了新的文献求助10
7秒前
7秒前
7秒前
YJ完成签到,获得积分10
8秒前
科研通AI5应助方向采纳,获得10
8秒前
科研小狗完成签到 ,获得积分10
8秒前
Lemenchichi发布了新的文献求助20
8秒前
三毛完成签到,获得积分10
9秒前
沉静的颦发布了新的文献求助20
9秒前
9秒前
10秒前
10秒前
xwq驳回了quhayley应助
10秒前
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806414
求助须知:如何正确求助?哪些是违规求助? 3351123
关于积分的说明 10353069
捐赠科研通 3067011
什么是DOI,文献DOI怎么找? 1684232
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765515