Automated Design of Metaheuristics Using Reinforcement Learning Within a Novel General Search Framework

元启发式 计算机科学 强化学习 启发式 人工智能 一般化 水准点(测量) 组合优化 机器学习 数学优化 算法 数学 数学分析 大地测量学 地理 操作系统
作者
Wenjie Yi,Rong Qu,Licheng Jiao,Ben Niu
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 1072-1084 被引量:39
标识
DOI:10.1109/tevc.2022.3197298
摘要

Metaheuristic algorithms have been investigated intensively to address highly complex combinatorial optimization problems. However, most metaheuristic algorithms have been designed manually by researchers of different expertise without a consistent framework. This article proposes a general search framework (GSF) to formulate in a unified way a range of different metaheuristics. With generic algorithmic components, including selection heuristics and evolution operators, the unified GSF aims to serve as the basis of analyzing algorithmic components for automated algorithm design. With the established new GSF, two reinforcement learning (RL)-based methods, deep $Q$ -network based and proximal policy optimization-based methods, have been developed to automatically design a new general population-based algorithm. The proposed RL-based methods are able to intelligently select and combine appropriate algorithmic components during different stages of the optimization process. The effectiveness and generalization of the proposed RL-based methods are validated comprehensively across different benchmark instances of the capacitated vehicle routing problem with time windows. This study contributes to making a key step toward automated algorithm design with a general framework supporting fundamental analysis by effective machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明发布了新的文献求助10
1秒前
Beton_X完成签到,获得积分20
2秒前
2秒前
科研通AI5应助bingbingf采纳,获得10
3秒前
3秒前
3秒前
Aixia完成签到 ,获得积分10
3秒前
大1发布了新的文献求助10
6秒前
FashionBoy应助Mike采纳,获得10
7秒前
无限行之发布了新的文献求助10
7秒前
敏感的可燕完成签到,获得积分10
7秒前
7秒前
augenstern发布了新的文献求助10
8秒前
8秒前
勤劳访烟完成签到 ,获得积分10
9秒前
昵称待定完成签到,获得积分10
13秒前
天真书竹完成签到,获得积分10
13秒前
愉快的楷瑞完成签到,获得积分10
14秒前
banksy发布了新的文献求助10
14秒前
安凤灵发布了新的文献求助10
14秒前
15秒前
conveyor6完成签到 ,获得积分10
15秒前
15秒前
雪子完成签到 ,获得积分20
16秒前
大模型应助敏感的可燕采纳,获得10
17秒前
17秒前
18秒前
烟花应助MILK采纳,获得10
18秒前
YF是杨芳完成签到 ,获得积分10
19秒前
小二郎应助小李采纳,获得10
19秒前
自由飞翔完成签到,获得积分10
20秒前
竹萧发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
8564523完成签到,获得积分10
21秒前
情怀应助粗心的谷蕊采纳,获得10
22秒前
23秒前
梁凯华发布了新的文献求助10
23秒前
lighting完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573588
求助须知:如何正确求助?哪些是违规求助? 3993911
关于积分的说明 12364183
捐赠科研通 3667119
什么是DOI,文献DOI怎么找? 2021045
邀请新用户注册赠送积分活动 1055221
科研通“疑难数据库(出版商)”最低求助积分说明 942616