A novel method for the classification of 3D point clouds based on the improved PointNet++

点云 计算机科学 人工智能 相似性(几何) 特征(语言学) 核(代数) 联营 数据挖掘 模式识别(心理学) 图像(数学) 数学 哲学 语言学 组合数学
作者
Ziming Liu,Guoguang Li,Yongfang Wang,Bin Yan,Ruizhen Gao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116208-116208
标识
DOI:10.1088/1361-6501/ad6e0e
摘要

Abstract In deep learning, point clouds are used as the primary input format for 3D data, which can provide detailed geometric information about objects in the original 3D space. PointNet++ is a deep learning network that uses point cloud data as an input format, which avoids the losses associated with the previous conversion of point cloud into 3D voxelization and a collection of 2D images. Although PointNet++ can directly process point cloud data in various ways, due to the disordered, irregular, and unevenly distributed nature of point cloud data, the effect of extracting point cloud features could be better. The large amount of point cloud data also leads to the training model falling into the local optimal solution, which affects the training results. In recent years, some effective methods and strategies have emerged to address these problems. In this study, three methods are proposed based on the PointNet++ network: feature similarity-based attention pooling, small kernel convolution, and diverse branch block method to improve the performance of the PointNet++ network. Experiments show that the improvement methods proposed in this paper effectively improve the feature extraction accuracy, which improves the accuracy of the PointNet++ network for classification on the ModelNet40_Normal_Resampled dataset, with an overall improvement of 1% compared with PointNet++.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淳于黎昕完成签到,获得积分10
1秒前
天天快乐应助翻翻CHEN采纳,获得10
2秒前
橘子屿布丁发布了新的文献求助100
2秒前
萨芬完成签到,获得积分10
3秒前
3秒前
3秒前
Panda尧完成签到,获得积分10
4秒前
4秒前
开心完成签到,获得积分10
6秒前
科研助手6应助Henry.g采纳,获得10
6秒前
科研通AI5应助guowu采纳,获得10
8秒前
onecloudhere发布了新的文献求助10
8秒前
8秒前
xiaoxin发布了新的文献求助10
9秒前
AutuMg完成签到,获得积分20
10秒前
唐卟哩钵完成签到,获得积分10
11秒前
觅兴完成签到,获得积分0
11秒前
笑羽完成签到,获得积分0
12秒前
Yoo.完成签到,获得积分10
12秒前
12秒前
Baneyhua完成签到,获得积分10
12秒前
13秒前
jnuszjz完成签到,获得积分10
14秒前
xiaoxin完成签到,获得积分10
15秒前
guozizi发布了新的文献求助100
15秒前
按时毕业的小林完成签到,获得积分10
16秒前
黄小北发布了新的文献求助10
16秒前
在水一方应助Silence采纳,获得10
17秒前
17秒前
18秒前
平心定气完成签到 ,获得积分10
19秒前
翻翻CHEN发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
ggbod完成签到,获得积分10
21秒前
dolabmu发布了新的文献求助10
22秒前
忆年慧逝完成签到,获得积分10
23秒前
自然遥发布了新的文献求助10
23秒前
痴痴的噜完成签到,获得积分10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805070
求助须知:如何正确求助?哪些是违规求助? 3350197
关于积分的说明 10347558
捐赠科研通 3066017
什么是DOI,文献DOI怎么找? 1683448
邀请新用户注册赠送积分活动 809021
科研通“疑难数据库(出版商)”最低求助积分说明 765153