OTAMatch: Optimal Transport Assignment with PseudoNCE for Semi-supervised Learning

计算机科学 人工智能 模式识别(心理学)
作者
Jinjin Zhang,Junjie Liu,Debang Li,Qiuyu Huang,Jiaxin Chen,Di Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4231-4244 被引量:1
标识
DOI:10.1109/tip.2024.3425174
摘要

In semi-supervised learning (SSL), many approaches follow the effective self-training paradigm with consistency regularization, utilizing threshold heuristics to alleviate label noise. However, such threshold heuristics lead to the underutilization of crucial discriminative information from the excluded data. In this paper, we present OTAMatch, a novel SSL framework that reformulates pseudo-labeling as an optimal transport (OT) assignment problem and simultaneously exploits data with high confidence to mitigate the confirmation bias. Firstly, OTAMatch models the pseudo-label allocation task as a convex minimization problem, facilitating end-to-end optimization with all pseudo-labels and employing the Sinkhorn-Knopp algorithm for efficient approximation. Meanwhile, we incorporate epsilon-greedy posterior regularization and curriculum bias correction strategies to constrain the distribution of OT assignments, improving the robustness with noisy pseudo-labels. Secondly, we propose PseudoNCE, which explicitly exploits pseudo-label consistency with threshold heuristics to maximize mutual information within self-training, significantly boosting the balance of convergence speed and performance. Consequently, our proposed approach achieves competitive performance on various SSL benchmarks. Specifically, OTAMatch substantially outperforms the previous state-of-the-art SSL algorithms in realistic and challenging scenarios, exemplified by a notable 9.45% error rate reduction over SoftMatch on ImageNet with 100K-label split, underlining its robustness and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助dm采纳,获得10
2秒前
迷人的雨莲完成签到,获得积分10
3秒前
5秒前
5秒前
apt发布了新的文献求助10
6秒前
8秒前
张静煊完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
祝祝发布了新的文献求助10
10秒前
机灵柚子应助羽寞采纳,获得20
13秒前
WLH完成签到 ,获得积分20
14秒前
烟花应助弟斯拉采纳,获得10
14秒前
人文发布了新的文献求助10
15秒前
小二郎应助小太阳采纳,获得10
16秒前
春风知我意完成签到,获得积分10
16秒前
16秒前
哈哈完成签到,获得积分10
17秒前
潇洒寄容发布了新的文献求助10
17秒前
丰都残卷完成签到,获得积分10
18秒前
我是老大应助ASC采纳,获得10
19秒前
欢城发布了新的文献求助10
19秒前
19秒前
夜云完成签到 ,获得积分10
21秒前
22秒前
22秒前
Yang22完成签到,获得积分10
23秒前
qyzhu完成签到,获得积分10
23秒前
tyfelix发布了新的文献求助10
25秒前
26秒前
wy发布了新的文献求助10
26秒前
26秒前
玄策发布了新的文献求助10
27秒前
欢城完成签到,获得积分10
29秒前
纯情的菀发布了新的文献求助10
31秒前
Loneranger发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
今后应助己凡采纳,获得10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870623
求助须知:如何正确求助?哪些是违规求助? 3412797
关于积分的说明 10681034
捐赠科研通 3137224
什么是DOI,文献DOI怎么找? 1730697
邀请新用户注册赠送积分活动 834310
科研通“疑难数据库(出版商)”最低求助积分说明 781133