Artificial intelligence and machine learning models for predicting the metallurgical performance of complex sulfide ore flotation process

硫化物 过程(计算) 冶金 工艺工程 制造工程 材料科学 计算机科学 人工智能 工程类 操作系统
作者
Danish Ali,Muhammad Badar Hayat,Lana Alagha,Keitumetse Cathrine Monyake,H. Khalid
出处
期刊:Mineral processing and extractive metallurgy [Informa]
卷期号:134 (1): 13-32
标识
DOI:10.1177/25726641241311475
摘要

This research study proposed a novel approach utilising AI models to predict the metallurgical performance of complex sulfide ore flotation. Five machine learning and artificial intelligence models were employed in this study, that is, Random Forest (RF), Artificial Neural Networks (ANN), Adaptive Neuro Fuzzy Interference System (ANFIS), Mamdani Fuzzy Logic (MFL) and Hybrid Neural Fuzzy Interference System (HyFIS). Sixty-two flotation tests were conducted on samples containing galena, chalcopyrite and sphalerite as the main valuable minerals, and pyrite as the main gangue mineral. Different variables were used as inputs in the AI studies including physiochemical and operational parameters. The flotation recovery of lead and copper and their corresponding grades in the bulk concentrate were the primary dependent variables (outputs). The input variables included the dosages of sodium cyanide (pyrite's depressant), sodium isopropyl xanthate (collector), zinc sulfate (sphalerite's depressant) and Methyl isobutyl carbinol (MIBC, frother); air flow rate; flotation time; and the speed of the impeller in the flotation cell, which is indicative of the energy input. For the purpose of AI model development, datasets were divided into two subsets. The first subset was primarily used for the training phase, and it comprised 80% of the total data. The second subset, consisting of 20% of the total data, was used for testing. The models’ performance was assessed using two main indicators: R-squared (R 2 ) for the proportion of explained variation and RMSE for the average prediction error. The Hybrid Neural Fuzzy Interference System demonstrated superior performance in predicting the recovery and grade of copper and lead, with R² and RMSE of 0.9895 and 1.069 for the training phase, respectively, whereas for the testing step the respective values were 0.9128 and 2.859.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M.完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
科研通AI6应助学术小白采纳,获得10
4秒前
hsc发布了新的文献求助10
4秒前
帅气的高跟鞋完成签到,获得积分10
5秒前
剁手党完成签到,获得积分10
5秒前
8888拉完成签到,获得积分10
6秒前
领导范儿应助登登采纳,获得10
6秒前
温乘云完成签到,获得积分10
7秒前
左传琦完成签到,获得积分10
7秒前
乐观的丝袜完成签到,获得积分10
9秒前
Ava应助刚睡醒采纳,获得10
9秒前
123发布了新的文献求助20
11秒前
12秒前
汉堡包应助汝桢采纳,获得10
12秒前
谦让的小鸽子完成签到,获得积分10
12秒前
崔雪峰发布了新的文献求助10
12秒前
13秒前
14秒前
大模型应助Ruiss采纳,获得10
14秒前
东北信风完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
18秒前
壹君发布了新的文献求助10
18秒前
qing_li发布了新的文献求助10
19秒前
20秒前
Yy发布了新的文献求助10
21秒前
RR发布了新的文献求助10
21秒前
刚睡醒发布了新的文献求助10
21秒前
卷卷完成签到,获得积分10
22秒前
Owen应助幻影猫采纳,获得10
22秒前
苏子饿了发布了新的文献求助10
23秒前
23秒前
笑点低的凉面完成签到,获得积分10
24秒前
呀呀呀呀发布了新的文献求助10
26秒前
uu发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328758
求助须知:如何正确求助?哪些是违规求助? 4468416
关于积分的说明 13905100
捐赠科研通 4361493
什么是DOI,文献DOI怎么找? 2395794
邀请新用户注册赠送积分活动 1389287
关于科研通互助平台的介绍 1360078