A Lightweight Drone Detection Method Integrated into a Linear Attention Mechanism Based on Improved YOLOv11

机制(生物学) 计算机科学 无人机 航空航天工程 遥感 地质学 物理 工程类 遗传学 量子力学 生物
作者
Sicheng Zhou,Lei Yang,Huiting Liu,Cong Zhou,Jiacheng Liu,Shuai Zhao,Keyi Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (4): 705-705
标识
DOI:10.3390/rs17040705
摘要

The timely and accurate detection of unidentified drones is vital for public safety. However, the unique characteristics of drones in complex environments and the varied postures they may adopt during approach present significant challenges. Additionally, deep learning algorithms often require large models and substantial computational resources, limiting their use on low-capacity platforms. To address these challenges, we propose LAMS-YOLO, a lightweight drone detection method based on linear attention mechanisms and adaptive downsampling. The model’s lightweight design, inspired by CPU optimization, reduces parameters using depthwise separable convolutions and efficient activation functions. A novel linear attention mechanism, incorporating an LSTM-like gating system, enhances semantic extraction efficiency, improving detection performance in complex scenarios. Building on insights from dynamic convolution and multi-scale fusion, a new adaptive downsampling module is developed. This module efficiently compresses features while retaining critical information. Additionally, an improved bounding box loss function is introduced to enhance localization accuracy. Experimental results demonstrate that LAMS-YOLO outperforms YOLOv11n, achieving a 3.89% increase in mAP and a 9.35% reduction in parameters. The model also exhibits strong cross-dataset generalization, striking a balance between accuracy and efficiency. These advancements provide robust technical support for real-time drone monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都是发布了新的文献求助30
刚刚
flow完成签到 ,获得积分10
2秒前
乌冬面完成签到,获得积分10
3秒前
霜鸣发布了新的文献求助10
3秒前
肚子圆圆的完成签到 ,获得积分10
3秒前
5秒前
搜集达人应助elizabeth339采纳,获得50
5秒前
6秒前
6秒前
可爱的函函应助霜鸣采纳,获得10
11秒前
修脚大师发布了新的文献求助10
12秒前
13秒前
JamesPei应助迷路旭采纳,获得10
14秒前
闪闪怀柔发布了新的文献求助10
16秒前
喜气洋洋完成签到,获得积分10
18秒前
20秒前
qf123456完成签到,获得积分20
20秒前
20秒前
喜气洋洋发布了新的文献求助10
21秒前
Jasper应助长生采纳,获得10
24秒前
24秒前
24秒前
cnbhhhhh完成签到,获得积分10
24秒前
hhuajw完成签到,获得积分10
26秒前
27秒前
香蕉觅云应助不安惜寒采纳,获得10
27秒前
29秒前
巴山发布了新的文献求助10
30秒前
30秒前
康康完成签到,获得积分10
32秒前
传统的雨文完成签到,获得积分10
32秒前
一一应助张玺博采纳,获得10
33秒前
Cer1sier_发布了新的文献求助10
33秒前
Woodward完成签到,获得积分10
35秒前
甜甜秋荷发布了新的文献求助10
35秒前
36秒前
37秒前
烟花应助科研通管家采纳,获得10
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
领导范儿应助科研通管家采纳,获得10
37秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A warm-up performed with proper-weight sandbags on the leg improves the speed and RPE performance of 100 m sprint in collegiate male sprinters 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826938
求助须知:如何正确求助?哪些是违规求助? 3369224
关于积分的说明 10454756
捐赠科研通 3088790
什么是DOI,文献DOI怎么找? 1699410
邀请新用户注册赠送积分活动 817316
科研通“疑难数据库(出版商)”最低求助积分说明 770158