Emotional analysis of operating room nurses in acute care hospitals in Japan: insights using ChatGPT

主题分析 倦怠 护理部 医学 护理管理 内容分析 心理学 应用心理学 定性研究 临床心理学 社会科学 社会学
作者
Kentaro Hara,Reika Tachibana,Ryosuke Kumashiro,Kodai Ichihara,Takahiro Uemura,Hiroshi Maéda,Michiko Yamaguchi,Takahiro Inoue
出处
期刊:BMC Nursing [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12912-024-02655-9
摘要

This study aimed to explore the emotions of operating room nurses in Japan towards perioperative nursing using generative AI and human analysis, and to identify factors contributing to burnout and turnover. A single-center cross-sectional study was conducted from February 2023 to February 2024, involving semi-structured interviews with 10 operating room nurses from a national hospital in Japan. Interview transcripts were analyzed using generative AI (ChatGPT-4o) and human researchers for thematic, emotional, and subjectivity analysis. A comparison between AI and human analysis was performed, and data visualization techniques, including keyword co-occurrence networks and cluster analysis, were employed to identify patterns and relationships. Key themes such as patient care, surgical safety, and nursing skills were identified through thematic analysis. Emotional analysis revealed a range of tones, with AI providing an efficient overview and human researchers capturing nuanced emotional insights. High subjectivity scores indicated deeply personal reflections. Keyword co-occurrence networks and cluster analysis highlighted connections between themes and distinct emotional experiences. Combining generative AI with human expertise offered nuanced insights into the emotions of operating room nurses. The findings emphasize the importance of emotional support, effective communication, and safety protocols in improving nurse well-being and job satisfaction. This hybrid approach can help address emotional challenges, reduce burnout, and enhance retention rates. Future research with larger and more diverse samples is needed to validate these findings and explore the broader applications of AI in healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LS完成签到,获得积分10
刚刚
kwl完成签到,获得积分10
刚刚
CodeCraft应助yyryyrr采纳,获得10
刚刚
乐乐应助深情的白薇采纳,获得10
2秒前
斯文败类应助XylonYu采纳,获得10
2秒前
风趣的洙完成签到,获得积分10
3秒前
科研通AI5应助张文淇采纳,获得10
4秒前
小蘑菇应助jia采纳,获得10
4秒前
过儿发布了新的文献求助30
4秒前
自由的雁完成签到,获得积分10
5秒前
一天一篇sci完成签到,获得积分10
6秒前
阿巴阿巴发布了新的文献求助30
6秒前
脑洞疼应助小小杜采纳,获得10
7秒前
7秒前
Jasper应助风趣的洙采纳,获得10
7秒前
隐形曼青应助望北楼主采纳,获得10
8秒前
司空铭发布了新的文献求助10
11秒前
Fy完成签到,获得积分10
11秒前
by完成签到,获得积分10
11秒前
Orange应助ding采纳,获得10
11秒前
12秒前
yyryyrr发布了新的文献求助10
13秒前
13秒前
奋斗的若云完成签到,获得积分10
14秒前
15秒前
超帅柚子完成签到 ,获得积分10
15秒前
完美世界应助li采纳,获得10
15秒前
16秒前
17秒前
云川完成签到,获得积分20
17秒前
orixero应助小王采纳,获得10
19秒前
小小杜发布了新的文献求助10
19秒前
WU发布了新的文献求助10
20秒前
李兴业发布了新的文献求助10
21秒前
司空铭完成签到,获得积分10
23秒前
25秒前
25秒前
27秒前
27秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818417
求助须知:如何正确求助?哪些是违规求助? 3361563
关于积分的说明 10413396
捐赠科研通 3079823
什么是DOI,文献DOI怎么找? 1693118
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768209