Application of social network analysis in football match analysis: A systematic review

中心性 社会网络分析 足球 网络分析 情境伦理学 计算机科学 社交网络(社会语言学) 荟萃分析 描述性统计 斯科普斯 韵律学 数据科学 心理学 数据挖掘 社会化媒体 统计 社会心理学 数学 万维网 医学 静态路由 路由协议 物理 布线(电子设计自动化) 计算机网络 梅德林 量子力学 政治学 内科学 法学
作者
Yufu Xu,Jorge Díaz-Cidoncha García,Hugo Sarmento,Yonghan Zhong,Bingnan Gong,Qing Yi,Miguel–Ángel Gómez
出处
期刊:International Journal of Sports Science & Coaching [SAGE Publishing]
标识
DOI:10.1177/17479541251377548
摘要

Social network analysis (SNA) has demonstrated strong potential for application in football match analysis. Previous reviews have limitations such as insufficient football-specific focus, lack of analysis-type classification, and outdated coverage. This review provides a comprehensive and up-to-date synthesis of the literature, categorizing applications of SNA in football matches into descriptive, correlational, comparative, and predictive analytical types. Following PRISMA 2020 guidelines, articles from the Web of Science All Databases and Scopus were retrieved using targeted keyword combinations. Of 1208 identified records, 49 articles satisfied inclusion criteria and were fully reviewed. Social network descriptive analysis primarily focused on identifying key players and their interactions. Correlational studies examined associations between network metrics and match performance indicators. Physical demands showed moderate, position-dependent correlations with degree-based centrality metrics. Technical indicators exhibited small to moderate positive correlations with network metrics. Match outcomes were weakly associated with structural metrics such as total links, network density, often serving as situational factors. Most studies (51%) employed comparative analysis. Micro-level analysis compared centrality metrics to identify key players and their attributes across varying situational factors, with midfielders exhibiting the highest centrality. At the macro level, studies comparing metrics such as network density found that superior network properties are linked to better team performance and vary across situational factors. Predictive studies demonstrated that network metrics possessed significant predictive potential, and models that incorporated these metrics achieved superior performance. Overall, social network predictive analysis accounts for the smallest proportion (12%). The predictive potential of SNA remains underexplored and warrants further scholarly attention. PROSPERO registration number: CRD42024587155
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NicholasZ完成签到,获得积分10
刚刚
丘比特应助小白采纳,获得10
1秒前
Sylus完成签到,获得积分10
1秒前
俊秀的寄风完成签到,获得积分10
1秒前
1秒前
buno完成签到,获得积分0
1秒前
xiaoma发布了新的文献求助10
1秒前
cyj完成签到,获得积分10
2秒前
2秒前
weilanhaian发布了新的文献求助10
3秒前
漂流发布了新的文献求助20
3秒前
3秒前
汉堡包应助wangyanling采纳,获得10
4秒前
zjy关注了科研通微信公众号
4秒前
梦伴发布了新的文献求助10
4秒前
welcome应助东京芝士123采纳,获得10
5秒前
可爱的函函应助王欣采纳,获得10
5秒前
Forez发布了新的文献求助10
5秒前
welcome应助东京芝士123采纳,获得10
5秒前
酷波er应助东京芝士123采纳,获得10
5秒前
502504811完成签到,获得积分10
5秒前
leei完成签到,获得积分10
5秒前
buno发布了新的文献求助30
5秒前
北落完成签到,获得积分10
6秒前
情怀应助淡定蓝采纳,获得10
6秒前
爆米花应助vulgar采纳,获得10
6秒前
烟花应助刘雨采纳,获得10
6秒前
青4096完成签到,获得积分10
6秒前
7秒前
7秒前
冷静柚子发布了新的文献求助20
7秒前
小语完成签到,获得积分10
8秒前
8秒前
庭有枇杷发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助20
9秒前
复杂函完成签到,获得积分10
9秒前
854fycchjh发布了新的文献求助10
10秒前
科研通AI6应助xiaoma采纳,获得10
10秒前
AXEDW完成签到,获得积分10
11秒前
打打应助贾灯采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4955893
求助须知:如何正确求助?哪些是违规求助? 4217743
关于积分的说明 13125213
捐赠科研通 4000211
什么是DOI,文献DOI怎么找? 2189259
邀请新用户注册赠送积分活动 1204358
关于科研通互助平台的介绍 1116309