Application of social network analysis in football match analysis: A systematic review

中心性 社会网络分析 足球 网络分析 情境伦理学 计算机科学 社交网络(社会语言学) 荟萃分析 描述性统计 斯科普斯 韵律学 数据科学 心理学 数据挖掘 社会化媒体 统计 社会心理学 数学 万维网 梅德林 静态路由 法学 内科学 物理 政治学 路由协议 计算机网络 布线(电子设计自动化) 医学 量子力学
作者
Ying Xu,Jorge Díaz-Cidoncha García,Hugo Sarmento,Yonghan Zhong,Bingnan Gong,Qing Yi,Miguel‐Ángel Gómez
出处
期刊:International Journal of Sports Science & Coaching [SAGE]
标识
DOI:10.1177/17479541251377548
摘要

Social network analysis (SNA) has demonstrated strong potential for application in football match analysis. Previous reviews have limitations such as insufficient football-specific focus, lack of analysis-type classification, and outdated coverage. This review provides a comprehensive and up-to-date synthesis of the literature, categorizing applications of SNA in football matches into descriptive, correlational, comparative, and predictive analytical types. Following PRISMA 2020 guidelines, articles from the Web of Science All Databases and Scopus were retrieved using targeted keyword combinations. Of 1208 identified records, 49 articles satisfied inclusion criteria and were fully reviewed. Social network descriptive analysis primarily focused on identifying key players and their interactions. Correlational studies examined associations between network metrics and match performance indicators. Physical demands showed moderate, position-dependent correlations with degree-based centrality metrics. Technical indicators exhibited small to moderate positive correlations with network metrics. Match outcomes were weakly associated with structural metrics such as total links, network density, often serving as situational factors. Most studies (51%) employed comparative analysis. Micro-level analysis compared centrality metrics to identify key players and their attributes across varying situational factors, with midfielders exhibiting the highest centrality. At the macro level, studies comparing metrics such as network density found that superior network properties are linked to better team performance and vary across situational factors. Predictive studies demonstrated that network metrics possessed significant predictive potential, and models that incorporated these metrics achieved superior performance. Overall, social network predictive analysis accounts for the smallest proportion (12%). The predictive potential of SNA remains underexplored and warrants further scholarly attention. PROSPERO registration number: CRD42024587155
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘响发布了新的文献求助10
刚刚
1秒前
称心夏兰发布了新的文献求助10
2秒前
2秒前
从容的夏瑶完成签到,获得积分10
3秒前
3秒前
且慢应助咸蛋黄蘸酱采纳,获得20
4秒前
4秒前
4秒前
韩梦完成签到,获得积分10
5秒前
kylin发布了新的文献求助10
5秒前
通科研发布了新的文献求助10
5秒前
一副药发布了新的文献求助10
8秒前
阿柱哥发布了新的文献求助10
8秒前
9秒前
LZH完成签到,获得积分20
9秒前
llll发布了新的文献求助10
10秒前
10秒前
ATOM发布了新的文献求助10
10秒前
wanci应助自由的柚子采纳,获得10
11秒前
大凯完成签到,获得积分10
11秒前
11秒前
小燕子发布了新的文献求助10
11秒前
14秒前
咪吖发布了新的文献求助10
15秒前
XXX发布了新的文献求助10
16秒前
17秒前
17秒前
wxyshare应助各方面采纳,获得10
17秒前
XUANZHEXIA发布了新的文献求助10
18秒前
20秒前
辛勤寻琴完成签到 ,获得积分10
20秒前
20秒前
Akim应助西科Jeremy采纳,获得10
21秒前
左传琦完成签到,获得积分10
21秒前
21秒前
无极微光应助科研通管家采纳,获得20
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475706
求助须知:如何正确求助?哪些是违规求助? 4577361
关于积分的说明 14361658
捐赠科研通 4505278
什么是DOI,文献DOI怎么找? 2468538
邀请新用户注册赠送积分活动 1456201
关于科研通互助平台的介绍 1429896