A Two-stage Framework for Online Unmanned Aerial Vehicles Search Planning

计算机科学 旅行商问题 规划师 无人机 运动规划 运筹学 搜索问题 数学优化 人工智能 机器人 工程类 数学 算法 生物 遗传学
作者
Hong Huang,Haopeng Duan,Lihua Liu,Kaiming Xiao
标识
DOI:10.1145/3579731.3579806
摘要

Unmanned Aerial Vehicles (UAV), also known as drones, have been widely used in regional data collection and information search, but there are also many practical challenges. In real-world operations of UAV search, the payoff and cost at each search point are unknown for the planner in advance which poses a great challenge to decision making. To this end, we first propose the problem of online decision making in UAV search planning where the drone has limited energy supply as a constraints and has to make an irrevocable decision to search this area or route to the next in an online manner. Then the online UAV search planning problem is decoupled into a traveling salesman problem (TSP) and an online resource planning problem such that it can be solved in a two-stage procedure. Specifically, the routing of search is obtained by solving TSP based on ant colony optimization, and the online decision is made through an online linear programming which is proven to be near-optimal. The effectiveness of the proposed two-stage approach is validated in wide-applied dataset, and experimental results show the superior performance of online search decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hanzhipad应助DONGLK采纳,获得10
1秒前
2秒前
2秒前
3秒前
LLH发布了新的文献求助10
3秒前
4秒前
4秒前
yuki完成签到,获得积分10
4秒前
5秒前
小马发布了新的文献求助10
7秒前
7秒前
8秒前
欢呼宛亦发布了新的文献求助10
8秒前
8秒前
舒心万声完成签到,获得积分10
9秒前
研友_LNB5DL发布了新的文献求助10
9秒前
赛德克完成签到,获得积分10
9秒前
10秒前
Orange发布了新的文献求助10
10秒前
Jasper应助yeziyang采纳,获得10
11秒前
张惠发布了新的文献求助10
12秒前
JamesPei应助漂亮的从蕾采纳,获得10
12秒前
12秒前
小冰棍发布了新的文献求助10
13秒前
zzz发布了新的文献求助10
13秒前
lgj应助曾经冰露采纳,获得10
14秒前
14秒前
15秒前
7ing发布了新的文献求助10
16秒前
iwonder发布了新的文献求助10
17秒前
bkagyin应助kousaidzx采纳,获得10
18秒前
carly发布了新的文献求助10
18秒前
xdc完成签到,获得积分10
19秒前
顺利的半蕾完成签到,获得积分10
20秒前
嘟嘟嘟杜发布了新的文献求助30
20秒前
20秒前
21秒前
发发发布了新的文献求助10
22秒前
yeziyang完成签到,获得积分10
22秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831805
求助须知:如何正确求助?哪些是违规求助? 3373943
关于积分的说明 10482648
捐赠科研通 3093880
什么是DOI,文献DOI怎么找? 1703103
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771411