Temperature dependent model of carbon supported platinum fuel cell catalyst degradation

铂金 溶解 集聚经济 催化作用 电化学 材料科学 碳纤维 降级(电信) 化学工程 粒子(生态学) 粒径 质子交换膜燃料电池 化学 复合材料 电极 物理化学 计算机科学 海洋学 地质学 工程类 复合数 电信 生物化学
作者
Ambrož Kregar,Matija Gatalo,Nik Maselj,Nejc Hodnik,Tomaž Katrašnik
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:514: 230542-230542 被引量:21
标识
DOI:10.1016/j.jpowsour.2021.230542
摘要

The use of mathematical modelling for describing the degradation of platinum-based carbon-supported catalysts (Pt/C) in PEMFC plays a crucial role in the development of new materials and mitigation strategies as well as in the improved understanding of individual degradation mechanisms and their relation to the operational conditions. In this work we present the first physically based model of Pt/C catalyst degradation that fully covers the effects of temperature on detrimental electrochemical reactions, consequent platinum particles dissolution, detachment and agglomeration, and the resulting loss of electrochemical surface area. The model is verified on the results of six accelerated stress tests performed on an industrial benchmark catalyst at various temperatures and potential cycling windows. The model is capable of reproducing the results of all experiments using the same set of model parameters, compatible with DFT calculations for energy barriers of similar electrochemical reactions as well as with the parameters of existing degradation models, which confirms its plausibility. According to the model results, the dissolution and subsequent redeposition of platinum is strongly affected by the temperature and represents the main mechanism of particle growth at temperatures below 60 °C, with carbon corrosion induced detachment and agglomeration playing only a minor role in particle growth. • Temperature-dependent electrochemical model of Pt fuel cell catalyst is developed. • Catalyst electrochemical surface loss due to dissolution and agglomeration is modelled. • The model is tested on degradation experiments at various potentials and temperatures. • The credibility of the model is confirmed by good agreement with the experimental data. • Platinum dissolution and redeposition is recognised as the main degradation mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
totoro完成签到,获得积分10
刚刚
Jieh完成签到,获得积分10
刚刚
懒惰扼杀激情完成签到 ,获得积分10
1秒前
吴天春完成签到,获得积分10
1秒前
枫糖叶落完成签到,获得积分10
2秒前
Bakkkyeom完成签到,获得积分10
2秒前
可可完成签到,获得积分10
3秒前
xzy998发布了新的文献求助200
4秒前
燕子完成签到,获得积分10
4秒前
菠萝蜜完成签到,获得积分10
7秒前
芝诺的乌龟完成签到 ,获得积分0
7秒前
pengyang完成签到 ,获得积分10
7秒前
LIUJIE完成签到,获得积分10
8秒前
8秒前
9秒前
511完成签到 ,获得积分10
11秒前
渺渺完成签到 ,获得积分10
12秒前
菠萝吹雪完成签到,获得积分10
13秒前
乐观无心发布了新的文献求助30
14秒前
Urusaiina完成签到,获得积分10
15秒前
SD完成签到 ,获得积分10
15秒前
西哥完成签到,获得积分10
15秒前
YOUYOU完成签到,获得积分10
16秒前
hzh完成签到 ,获得积分10
16秒前
18秒前
18秒前
yicui发布了新的文献求助30
21秒前
luobote完成签到 ,获得积分10
22秒前
rgjipeng完成签到,获得积分0
23秒前
noah发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
hahaha完成签到,获得积分10
24秒前
WENS完成签到,获得积分10
24秒前
舒适的天奇完成签到 ,获得积分10
24秒前
小情绪应助EMMA采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
乐观无心完成签到,获得积分10
25秒前
自来也完成签到,获得积分10
29秒前
C_Li完成签到,获得积分0
29秒前
wnll完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430