高斯过程
卡尔曼滤波器
非参数回归
平滑的
克里金
人工智能
计算机科学
机器学习
高斯分布
贝叶斯概率
回归
算法
信号处理
回归分析
模式识别(心理学)
数学
统计
数字信号处理
计算机视觉
计算机硬件
量子力学
物理
作者
Simo Särkkä,Arno Solin,Jouni Hartikainen
标识
DOI:10.1109/msp.2013.2246292
摘要
Gaussian process-based machine learning is a powerful Bayesian paradigm for nonparametric nonlinear regression and classification. In this article, we discuss connections of Gaussian process regression with Kalman filtering and present methods for converting spatiotemporal Gaussian process regression problems into infinite-dimensional state-space models. This formulation allows for use of computationally efficient infinite-dimensional Kalman filtering and smoothing methods, or more general Bayesian filtering and smoothing methods, which reduces the problematic cubic complexity of Gaussian process regression in the number of time steps into linear time complexity. The implication of this is that the use of machine-learning models in signal processing becomes computationally feasible, and it opens the possibility to combine machine-learning techniques with signal processing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI