反键分子轨道
硫族元素
过渡金属
电子结构
材料科学
凝聚态物理
带隙
热电效应
塞贝克系数
密度泛函理论
电子能带结构
结晶学
化学
电子
计算化学
光电子学
物理
热力学
原子轨道
量子力学
生物化学
催化作用
作者
Daniel Bilc,D. Benea,V. Pop,Philippe Ghosez,Matthieu J. Verstraete
标识
DOI:10.1021/acs.jpcc.1c07088
摘要
Using first-principles electronic structure calculations performed within the B1-WC hybrid functional, we study the thickness and strain dependency of electronic and thermoelectric (TE) properties of transition-metal dichalcogenides (TMDs). We consider both 2H (MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2) and 1T (SnS2, SnSe2, HfS2, HfSe2, HfTe2, ZrS2, ZrSe2) structures and identify those TMDs with a high TE potential (WSe2, MoTe2, and SnSe2). The thickness and strain significantly change the electronic properties near the forbidden band gaps. We rationalize at an atomic level these changes in terms of the interplay between in-plane bonding/antibonding X–X(M–M) interactions through sp2 hybridization and the stronger antibonding/nonbonding M–X interactions due to sp3d and sp3d2 hybridizations inside TMD layers (X, chalcogen; M, transition metal, Sn). Thickness and in-plane strain appear as effective ways to tune electronic band structures, increase the degeneracy of carrier pockets, and optimize the TE properties of TMDs. We estimate the anisopropy of carrier pockets and introduce the effective mass quality factor Bm for the maximization of TE performance at a given carrier density and temperature. High-potential TMDs have Bm and power factors comparable to PbTe and Bi2Te3.
科研通智能强力驱动
Strongly Powered by AbleSci AI