材料科学
光纤布拉格光栅
光纤
光纤传感器
温度循环
热电偶
光电探测器
光电子学
光学
光功率
光学滤波器
波长
滤波器(信号处理)
温度测量
热的
纤维
复合材料
激光器
电气工程
工程类
气象学
物理
量子力学
作者
Shiuh-Chuan Her,Jr-Luen Tasi
出处
期刊:Sensors
[MDPI AG]
日期:2022-06-13
卷期号:22 (12): 4466-4466
被引量:2
摘要
A fiber optic sensing system consisting of a fiber Bragg grating (FBG) sensor, optical circulator, optical band pass filter and photodetector is developed to monitor the real-time temperature response of a structure under a dynamic thermal loading. The FBG sensor is surface-bonded on a test specimen and integrated with an optical band pass filter. As a broadband light source transmits into a FBG sensor, a specific wavelength is reflected and transmitted into an optical band pass filter. The reflected wavelength is significantly affected by the temperature, while the output light power from the optical band pass filter is dependent on the wavelength. By measuring the light power with a photodetector, the wavelength can be demodulated, resulting in the determination of the temperature. In this work, the proposed optical sensing system was utilized to monitor the dynamic temperature change of a steel beam under a thermal cycling loading. To verify the accuracy of the fiber optic sensor, a thermocouple was adopted as the reference. The experimental results illustrate a good agreement between the fiber optic sensor and thermocouple. Electronic packages composed of various components such as a solder joint, silicon die, mold compound, and solder mask are frequently subjected to a thermal cycling loading in real-life applications. Temperature variations’ incorporation with mismatches of coefficients of thermal expansion among the assembly components leads to crack growth, damage accumulation and final failure. It is important to monitor the temperature to prevent a thermal fatigue failure. A fast response and easy implementation of the fiber optic sensing system was proposed for the real-time temperature measurement under thermal cycling loading.
科研通智能强力驱动
Strongly Powered by AbleSci AI