EEG-based motor imagery classification using convolutional neural networks with local reparameterization trick

卷积神经网络 计算机科学 脑电图 人工智能 分类器(UML) 模式识别(心理学) 稳健性(进化) 运动表象 深度学习 机器学习 适应性 脑-机接口 心理学 化学 精神科 生物化学 基因 生态学 生物
作者
Wenqie Huang,Wenwen Chang,Guanghui Yan,Zhifei Yang,Hao Luo,Huayan Pei
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115968-115968 被引量:32
标识
DOI:10.1016/j.eswa.2021.115968
摘要

Deep learning (DL) method has emerged as a powerful tool in studying the behavior of Electroencephalogram (EEG)-based motor imagery (MI). Although prospective studies have demonstrated promising performance, most of these studies have been affected by the lack of research between groups and individual subjects, and the accuracy of MI classification still has room for improvement. Due to the inter-individual variability in the EEG classification, enhancing the adaptability and robustness between different individuals is especially critical. We developed a novel DL model based on the EEG signals to improve MI classification performance by introducing the local reparameterization trick into convolutional neural networks (LRT-CNN). 109 subjects from PhysioNet Dataset were used to test the proposed model. Firstly, a global classifier was evaluated by four groups. Secondly, individual variability was examined by testing individual subjects. The classification accuracy of global classifier in 20 subjects, 50 subjects, 80 subjects, and 109 subjects are 93.86%, 98.94%, 93.04%, and 92.41%, respectively. The maximum classification accuracy of one individual subject is 99.79%, which is better than the state-of-the-art method and proves the proposed method can handle the challenge of individual variability. We conclude that introducing the local reparameterization trick into convolutional neural networks can significantly improve the accuracy of the MI tasks based on the EEG signals without any complicated and tedious feature engineering works. Besides, encouraging results were obtained both between groups (multiple subjects) and on a single subject. The experimental results add to the rapidly expanding field of brain science and contribute to our understanding of applying the DL method to address EEG-based classification problems (not limited to MI classification issues).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助张雯悦采纳,获得10
1秒前
zjw完成签到,获得积分10
2秒前
喵呜完成签到 ,获得积分10
2秒前
3秒前
GGbond完成签到,获得积分10
5秒前
6秒前
7秒前
9秒前
ll完成签到,获得积分10
10秒前
科研啊科研完成签到,获得积分10
11秒前
嘤嘤嘤发布了新的文献求助10
15秒前
科研通AI2S应助奈何采纳,获得10
16秒前
忆点儿孤狼完成签到,获得积分10
21秒前
一株多肉完成签到,获得积分10
22秒前
Jzhang完成签到,获得积分10
23秒前
完美世界应助潇潇雨歇采纳,获得10
25秒前
qiao应助hh采纳,获得10
26秒前
霸气的小成成完成签到,获得积分10
26秒前
27秒前
31秒前
31秒前
情怀应助科研通管家采纳,获得10
31秒前
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
热心乌完成签到,获得积分0
33秒前
ghy完成签到,获得积分10
33秒前
粥小周发布了新的文献求助10
33秒前
2568269431完成签到 ,获得积分10
39秒前
Hester完成签到,获得积分10
39秒前
罗实完成签到 ,获得积分10
40秒前
搞怪的紫雪完成签到,获得积分10
40秒前
ll发布了新的文献求助30
42秒前
迷人的沛山完成签到 ,获得积分10
42秒前
贾文斌完成签到,获得积分10
43秒前
44秒前
愤怒的之玉完成签到 ,获得积分10
46秒前
梁晓婉完成签到,获得积分10
46秒前
zdx1022完成签到,获得积分10
48秒前
xmz完成签到,获得积分10
50秒前
Haucicy完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779759
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10221975
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549