EEG-based motor imagery classification using convolutional neural networks with local reparameterization trick

卷积神经网络 计算机科学 脑电图 人工智能 分类器(UML) 模式识别(心理学) 稳健性(进化) 运动表象 深度学习 机器学习 适应性 脑-机接口 心理学 基因 化学 精神科 生物 生物化学 生态学
作者
Wenqie Huang,Wenwen Chang,Guanghui Yan,Zhifei Yang,Hao Luo,Huayan Pei
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115968-115968 被引量:39
标识
DOI:10.1016/j.eswa.2021.115968
摘要

Deep learning (DL) method has emerged as a powerful tool in studying the behavior of Electroencephalogram (EEG)-based motor imagery (MI). Although prospective studies have demonstrated promising performance, most of these studies have been affected by the lack of research between groups and individual subjects, and the accuracy of MI classification still has room for improvement. Due to the inter-individual variability in the EEG classification, enhancing the adaptability and robustness between different individuals is especially critical. We developed a novel DL model based on the EEG signals to improve MI classification performance by introducing the local reparameterization trick into convolutional neural networks (LRT-CNN). 109 subjects from PhysioNet Dataset were used to test the proposed model. Firstly, a global classifier was evaluated by four groups. Secondly, individual variability was examined by testing individual subjects. The classification accuracy of global classifier in 20 subjects, 50 subjects, 80 subjects, and 109 subjects are 93.86%, 98.94%, 93.04%, and 92.41%, respectively. The maximum classification accuracy of one individual subject is 99.79%, which is better than the state-of-the-art method and proves the proposed method can handle the challenge of individual variability. We conclude that introducing the local reparameterization trick into convolutional neural networks can significantly improve the accuracy of the MI tasks based on the EEG signals without any complicated and tedious feature engineering works. Besides, encouraging results were obtained both between groups (multiple subjects) and on a single subject. The experimental results add to the rapidly expanding field of brain science and contribute to our understanding of applying the DL method to address EEG-based classification problems (not limited to MI classification issues).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦发布了新的文献求助10
刚刚
自觉的书蝶完成签到,获得积分10
刚刚
1秒前
1秒前
3秒前
3秒前
Meteor完成签到 ,获得积分10
3秒前
王sy完成签到 ,获得积分10
4秒前
4秒前
4秒前
Yang发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
ruihan完成签到 ,获得积分10
5秒前
科研通AI6应助郑哈哈采纳,获得10
5秒前
语文陈老师完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
kentonchow应助isonomia采纳,获得80
7秒前
嗯嗯发布了新的文献求助10
7秒前
WenlingChen完成签到,获得积分10
7秒前
桐桐应助wmy0607采纳,获得10
8秒前
小二郎应助xintianli采纳,获得10
9秒前
10秒前
10秒前
empty发布了新的文献求助10
10秒前
10秒前
11秒前
田様应助风趣夜云采纳,获得10
11秒前
高高行云发布了新的文献求助10
11秒前
jj发布了新的文献求助10
11秒前
SciGPT应助薯条一克采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
Julie发布了新的文献求助10
12秒前
12秒前
脑洞疼应助1521515采纳,获得20
13秒前
巴拿拿完成签到,获得积分10
13秒前
陈末应助老实的问寒采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406216
求助须知:如何正确求助?哪些是违规求助? 4524308
关于积分的说明 14097238
捐赠科研通 4438066
什么是DOI,文献DOI怎么找? 2435946
邀请新用户注册赠送积分活动 1428078
关于科研通互助平台的介绍 1406280