Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills

海水淡化 工艺工程 太阳能淡化 热的 低温热脱盐 太阳能 蒸馏 光电-热混合太阳能集热器 工作(物理) 高效能源利用 环境科学 计算机科学 机械工程 工程类 气象学 电气工程 化学 物理 有机化学 生物化学
作者
Lenan Zhang,Zhenyuan Xu,Bikram Bhatia,Bangjun Li,Lin Zhao,Evelyn N. Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:266: 114864-114864 被引量:73
标识
DOI:10.1016/j.apenergy.2020.114864
摘要

Seawater desalination is a promising solution to global water shortage. Commercially available desalination technologies typically require large installations which can be impractical for developing regions without well-developed infrastructure. Passive solar desalination promises a viable solution, but can suffer from low efficiencies. Recent advances in the thermal design of small-scale solar desalination systems have demonstrated the potential for high-efficiency solar desalination in portable systems. In particular, the concept of a thermally-localized multistage solar still (TMSS) – which combines localized heating of a capillary flow with condensation heat recycling – has been experimentally demonstrated very recently and achieved over 100% solar-thermal cumulative efficiency. However, a fundamental understanding of the heat and mass transfer, efficiency limits and optimization strategies are missing in the literature. This work presents a modeling framework that evaluates the thermal and vapor transport in a model TMSS system with varying device configuration and predicts its solar desalination efficiency. We demonstrate that an ultrahigh solar-thermal cumulative efficiency, many times higher than that of conventional solar stills, can be achieved by optimizing the number of stages and device geometry. Specifically, our modeling shows that the efficiency of the capillary fed TMSS is limited by the dissipation of thermal energy to the environment during condensation and significant gains in efficiency can be achieved by minimizing this loss. This work provides insights into physical processes critical for thermally-localized portable solar distillation which could lead to high-performance desalination or water purification technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可完成签到,获得积分10
刚刚
hm777发布了新的文献求助10
刚刚
小马甲应助Qq采纳,获得10
刚刚
小单王发布了新的文献求助10
刚刚
周新哲完成签到 ,获得积分10
刚刚
早早发论文完成签到,获得积分10
1秒前
闪闪的夏之完成签到,获得积分10
1秒前
小钟发布了新的文献求助10
1秒前
1秒前
BJYX发布了新的文献求助10
1秒前
ling完成签到,获得积分10
2秒前
2秒前
粉刷匠完成签到,获得积分10
2秒前
11完成签到,获得积分10
3秒前
whooer发布了新的文献求助10
3秒前
红心欢石榴完成签到,获得积分10
3秒前
一只五条悟完成签到,获得积分10
4秒前
4秒前
CodeCraft应助徐来采纳,获得10
4秒前
可可发布了新的文献求助10
4秒前
小二郎应助章丘吴彦祖采纳,获得10
5秒前
5秒前
hhh完成签到,获得积分10
6秒前
xiaoxia完成签到,获得积分10
6秒前
7秒前
zhangxinan完成签到,获得积分10
7秒前
栗子完成签到,获得积分10
7秒前
科目三应助大袁采纳,获得10
8秒前
8秒前
冰冰冰发布了新的文献求助10
8秒前
提笔写未来C完成签到,获得积分10
9秒前
9秒前
pp完成签到,获得积分10
9秒前
eric完成签到 ,获得积分0
9秒前
Syang发布了新的文献求助10
9秒前
gzf完成签到 ,获得积分10
9秒前
stan完成签到,获得积分10
9秒前
Pretrial完成签到 ,获得积分10
10秒前
Jasper应助yi采纳,获得10
10秒前
刘奶奶的牛奶完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804427
求助须知:如何正确求助?哪些是违规求助? 3349330
关于积分的说明 10343291
捐赠科研通 3065325
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808683
科研通“疑难数据库(出版商)”最低求助积分说明 764650