已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence Identifies Factors Associated with Blood Loss and Surgical Experience in Cholecystectomy

胆囊切除术 失血 普通外科 医学 外科
作者
Josiah Aklilu,Min Sun,Shelly Goel,Sebastiano Bartoletti,Anita Rau,Griffin Olsen,Kay S. Hung,S. Mintz,Vicki Luong,Arnold Milstein,Mark J. Ott,Robert Tibshirani,Jeffrey K. Jopling,Eric C. Sorenson,Dan E. Azagury,Serena Yeung
标识
DOI:10.1056/aioa2300088
摘要

BackgroundLaparoscopic surgery videos offer valuable insights into the intraoperative skills of surgeons. Traditionally, skill assessment has focused on trainees, but analyzing the operative techniques of established surgeons can reveal behaviors that are associated with surgical expertise. Computer vision (CV), a domain of artificial intelligence (AI), facilitates scalable, video-based assessment, enabling the discovery of novel associations between surgical skill and clinical outcomes. For this study, we developed an AI-powered CV model capable of autonomously recognizing fine-grained surgical actions in laparoscopic videos and uncovering associations between these actions and operative blood loss and surgical experience.MethodsWe utilized a dataset of laparoscopic surgical videos from 243 patients who underwent cholecystectomy. We used a subset of these videos to train an AI-powered CV model to recognize 150 fine-grained surgical action triplets (SATs) comprising unique combinations of three components: surgical instruments (16 total), motions (13), and anatomical structures (19). We then used the trained AI model to recognize these SATs in all 243 case videos. We considered estimated blood loss, as reported postoperatively by the performing surgeon, and refined this measure using retrospective video review by experienced surgeons, yielding operative blood loss. We also considered surgeon experience, defined as the number of postresidency years of the operating surgeon. We used a logistic regression model to infer blood loss and surgical experience on the basis of AI-identified surgical actions in the laparoscopic videos. We subsequently analyzed the relationships among surgical actions, operative blood loss, and surgical experience.ResultsThe operating surgeons in the video dataset had 8 to 31 years of surgical experience. Estimated operative blood loss among patients ranged from 0 to 175 ml. Our model predicted binary blood loss (low vs. moderate) with an area under the receiver operator characteristic (AUROC) of 0.81 and binary surgical experience (low vs. high) with an AUROC of 0.78. Higher blood loss was significantly associated with increased duration of use of a laparoscopic suction irrigator to dissect the cystic pedicle (P=0.04) and with use of the irrigator to aspirate blood (P=0.03) or irrigate the cystic pedicle (P=0.04). High surgical experience was moderately associated with longer duration of dissection of connective tissue with L-hook electrocautery (P=0.07) and with total duration of the case (P=0.07). High surgical experience was strongly associated with elective cases (P<0.001).ConclusionsThis study demonstrates the capability of AI CV models to analyze intricate surgical activity in large volumes of video data. By training the CV model on a set of laparoscopic cholecystectomy videos and then deploying it to recognize surgical actions in a larger cohort, we obtained novel and scalable insights without labor-intensive manual review. We specifically demonstrate the capability of AI-powered CV models to correlate surgical experience and technique with intraoperative outcomes (blood loss). (Funded by the Stanford Clinical Excellence Research Center and others.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助认真凝安采纳,获得10
刚刚
解惑大师完成签到 ,获得积分10
刚刚
寒酥完成签到,获得积分10
1秒前
拥抱完成签到 ,获得积分10
1秒前
Setlla完成签到 ,获得积分10
2秒前
yc完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
jacob258完成签到 ,获得积分10
3秒前
123发布了新的文献求助10
4秒前
平淡擎汉完成签到,获得积分10
4秒前
Akim应助哭泣天抒采纳,获得10
4秒前
坚强觅珍发布了新的文献求助10
4秒前
AZN完成签到 ,获得积分10
5秒前
充电宝应助君兰采纳,获得10
5秒前
Xinlei发布了新的文献求助30
5秒前
研友_VZG7GZ应助尊敬代桃采纳,获得10
5秒前
shiny完成签到 ,获得积分10
6秒前
yc发布了新的文献求助10
6秒前
老马哥完成签到 ,获得积分0
6秒前
凌奕添完成签到 ,获得积分10
6秒前
斯文梦寒完成签到 ,获得积分10
7秒前
7秒前
8秒前
GGBond完成签到 ,获得积分10
8秒前
Milton_z完成签到 ,获得积分0
8秒前
平淡擎汉发布了新的文献求助10
8秒前
温暖的炒饭完成签到 ,获得积分10
9秒前
吴谷杂粮完成签到 ,获得积分10
10秒前
欣雪完成签到 ,获得积分10
10秒前
明理的问兰完成签到,获得积分10
10秒前
爱听歌契完成签到 ,获得积分10
10秒前
狂野的老黑完成签到 ,获得积分10
11秒前
不想吃大蒜完成签到 ,获得积分10
12秒前
pojian完成签到,获得积分10
12秒前
李顺利完成签到 ,获得积分10
12秒前
YU完成签到 ,获得积分10
12秒前
几两完成签到 ,获得积分10
12秒前
12秒前
黄淮科研小白龙完成签到 ,获得积分10
12秒前
光亮的天川完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482025
求助须知:如何正确求助?哪些是违规求助? 4583040
关于积分的说明 14388066
捐赠科研通 4511873
什么是DOI,文献DOI怎么找? 2472617
邀请新用户注册赠送积分活动 1458890
关于科研通互助平台的介绍 1432284

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10