Optimization of Chitosan - MIL-101(Fe) - Polyethyleneimine MOF-Based Composite Beads for Methyl Orange Removal

材料科学 壳聚糖 复合数 甲基橙 化学工程 橙色(颜色) 复合材料 有机化学 化学 催化作用 食品科学 光催化 工程类
作者
Nathaniel Saporsantos,Isaac Jerome C. Dela Cruz,J. Perez
出处
期刊:Materials Science Forum 卷期号:1112: 101-108 被引量:1
标识
DOI:10.4028/p-wh10fg
摘要

Metal-Organic Framework (MOF)-based composite beads consisting of MIL-101(Fe), Chitosan (CS), and Polyethyleneimine (PEI) crosslinked with glutaraldehyde (GLA) were synthesized. Response Surface Methodology was used to optimize the synthesis conditions of the beads to maximize Methyl Orange (MO) removal via batch adsorption experiments. Using an experimental design with three independent variables MIL-101(Fe) (500-1500 ppm), PEI (1-2%), GLA (0.5-2.5%), a second-order polynomial model was obtained to relate MO removal and these variables. A high R 2 (0.9944) and F-value (176.97) suggested good agreement between experimental data and the model. The optimum beads were found to consist of 500 ppm MIL-101 (Fe), 1.44% PEI, crosslinked in 2.11% GLA corresponding to a percent MO removal of 95.75%. Validation experiments done by subjecting the optimized beads to batch adsorption of MO confirmed good predicting capability of the model with an experimental MO removal of 96.20%. Characterization of the beads was performed using Fourier Transform Infrared Spectroscopy (FTIR) analysis and Scanning Electron Microscope (SEM). The beads were found to contain multiple functional groups and have a coarse surface with a porous structure which are ideal attributes for good adsorbents.the beads was performed using Fourier Transform Infrared Spectroscopy (FTIR) analysis and Scanning Electron Microscope (SEM). The beads were found to contain multiple functional groups and have a coarse surface with a porous structure which are ideal attributes for good adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程瑶瑶瑶完成签到 ,获得积分10
1秒前
1秒前
zzzz完成签到,获得积分10
2秒前
真的苦逼完成签到,获得积分10
2秒前
qunli完成签到,获得积分10
4秒前
姜彦乔发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
小蘑菇应助勤劳的小虾米采纳,获得10
7秒前
8秒前
8秒前
张天完成签到,获得积分10
8秒前
无风风完成签到 ,获得积分10
8秒前
殷勤的菀完成签到,获得积分10
10秒前
10秒前
英姑应助zxY采纳,获得10
11秒前
小蘑菇应助许译匀采纳,获得10
11秒前
哈哈发布了新的文献求助10
11秒前
11秒前
12秒前
Eden发布了新的文献求助10
14秒前
搜集达人应助狂野雨梅采纳,获得10
15秒前
15秒前
Lucas应助阿龙采纳,获得10
16秒前
小鱼给小鱼的求助进行了留言
17秒前
NNi发布了新的文献求助10
17秒前
Nanami发布了新的文献求助10
18秒前
汉堡包应助EMM采纳,获得10
18秒前
呼延坤发布了新的文献求助10
21秒前
不爱看文献头疼应助面包采纳,获得10
22秒前
22秒前
22秒前
pluto应助残剑月采纳,获得10
23秒前
学酥垃圾发布了新的文献求助10
24秒前
24秒前
pluto应助HuiYmao采纳,获得10
25秒前
京城熬夜的荔枝完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605