Multi-scale context UNet-like network with redesigned skip connections for medical image segmentation

分割 计算机科学 背景(考古学) 特征(语言学) 编码器 修剪 比例(比率) 人工智能 图像分割 可扩展性 模式识别(心理学) 数据挖掘 数据库 语言学 哲学 物理 量子力学 农学 生物 操作系统 古生物学
作者
Ledan Qian,Caiyun Wen,Yi Li,Zhongyi Hu,Xiao Zhou,Xiaonyu Xia,Soo-Hyung Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107885-107885 被引量:21
标识
DOI:10.1016/j.cmpb.2023.107885
摘要

Medical image segmentation has garnered significant research attention in the neural network community as a fundamental requirement for developing intelligent medical assistant systems. A series of UNet-like networks with an encoder-decoder architecture have achieved remarkable success in medical image segmentation. Among these networks, UNet2+ (UNet++) and UNet3+ (UNet+++) have introduced redesigned skip connections, dense skip connections, and full-scale skip connections, respectively, surpassing the performance of the original UNet. However, UNet2+ lacks comprehensive information obtained from the entire scale, which hampers its ability to learn organ placement and boundaries. Similarly, due to the limited number of neurons in its structure, UNet3+ fails to effectively segment small objects when trained with a small number of samples.In this study, we propose UNet_sharp (UNet#), a novel network topology named after the "#" symbol, which combines dense skip connections and full-scale skip connections. In the decoder sub-network, UNet# can effectively integrate feature maps of different scales and capture fine-grained features and coarse-grained semantics from the entire scale. This approach enhances the understanding of organ and lesion positions and enables accurate boundary segmentation. We employ deep supervision for model pruning to accelerate testing and enable mobile device deployment. Additionally, we construct two classification-guided modules to reduce false positives and improve segmentation accuracy.Compared to current UNet-like networks, our proposed method achieves the highest Intersection over Union (IoU) values ((92.67±0.96)%, (92.38±1.29)%, (95.36±1.22)%, (74.01±2.03)%) and F1 scores ((91.64±1.86)%, (95.70±2.16)%, (97.34±2.76)%, (84.77±2.65)%) on the semantic segmentation tasks of nuclei, brain tumors, liver, and lung nodules, respectively.The experimental results demonstrate that the reconstructed skip connections in UNet successfully incorporate multi-scale contextual semantic information. Compared to most state-of-the-art medical image segmentation models, our proposed method more accurately locates organs and lesions and precisely segments boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿宝完成签到,获得积分0
刚刚
科研通AI2S应助tuanheqi采纳,获得20
刚刚
1秒前
cyw完成签到,获得积分10
1秒前
1秒前
wandaiji完成签到,获得积分10
1秒前
吴建文完成签到 ,获得积分10
1秒前
wenjing完成签到,获得积分10
1秒前
十二平均律完成签到,获得积分10
2秒前
庄冬丽完成签到,获得积分10
2秒前
kol完成签到,获得积分10
3秒前
BZPL完成签到,获得积分10
3秒前
碳酸氢钠完成签到,获得积分10
3秒前
英俊枫完成签到,获得积分10
4秒前
4秒前
wali完成签到 ,获得积分0
5秒前
四然完成签到,获得积分10
5秒前
孙文远完成签到,获得积分10
6秒前
zoro完成签到,获得积分10
6秒前
free完成签到,获得积分10
6秒前
米粥饭完成签到,获得积分10
6秒前
丿夜幕灬降临丨完成签到,获得积分10
6秒前
明哲派完成签到,获得积分10
6秒前
haohao完成签到,获得积分10
7秒前
玛卡巴卡发布了新的文献求助10
7秒前
研友_5Zl9D8完成签到,获得积分10
7秒前
Ade完成签到,获得积分10
7秒前
majf发布了新的文献求助30
8秒前
swordshine完成签到,获得积分10
8秒前
飞想思完成签到,获得积分10
8秒前
广旭完成签到 ,获得积分10
9秒前
sss完成签到,获得积分10
9秒前
Fengzhen007完成签到,获得积分10
9秒前
ban完成签到,获得积分10
9秒前
9秒前
共享精神应助科研达人采纳,获得10
10秒前
音乐起完成签到,获得积分10
10秒前
奋斗的思烟完成签到 ,获得积分10
10秒前
马麻薯完成签到,获得积分10
10秒前
一夜秋风花尽落完成签到,获得积分20
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330170
关于积分的说明 10244733
捐赠科研通 3045558
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800631
科研通“疑难数据库(出版商)”最低求助积分说明 759577